statistics.cpp 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865
  1. #include <iostream>
  2. #include <fstream>
  3. #include <vector>
  4. #include <math.h>
  5. #include "statistics.h"
  6. #include <sstream>
  7. #include <SQLiteCpp/SQLiteCpp.h>
  8. #include "statistics_db.h"
  9. #include "statistics.h"
  10. #include "utilities.h"
  11. using namespace Tins;
  12. /**
  13. * Checks if there is a payload and increments payloads counter.
  14. * @param pdu_l4 The packet that should be checked if it has a payload or not.
  15. */
  16. void statistics::checkPayload(const PDU *pdu_l4) {
  17. if(this->getDoExtraTests()) {
  18. // pdu_l4: Tarnsport layer 4
  19. int pktSize = pdu_l4->size();
  20. int headerSize = pdu_l4->header_size(); // TCP/UDP header
  21. int payloadSize = pktSize - headerSize;
  22. if (payloadSize > 0)
  23. payloadCount++;
  24. }
  25. }
  26. /**
  27. * Checks the correctness of TCP checksum and increments counter if the checksum was incorrect.
  28. * @param ipAddressSender The source IP.
  29. * @param ipAddressReceiver The destination IP.
  30. * @param tcpPkt The packet to get checked.
  31. */
  32. void statistics::checkTCPChecksum(const std::string &ipAddressSender, const std::string &ipAddressReceiver, TCP tcpPkt) {
  33. if(this->getDoExtraTests()) {
  34. if(check_tcpChecksum(ipAddressSender, ipAddressReceiver, tcpPkt))
  35. correctTCPChecksumCount++;
  36. else incorrectTCPChecksumCount++;
  37. }
  38. }
  39. /**
  40. * Calculates entropy of the source and destination IPs in a time interval.
  41. * @param intervalStartTimestamp The timstamp where the interval starts.
  42. * @return a vector: contains source IP entropy and destination IP entropy.
  43. */
  44. std::vector<float> statistics::calculateLastIntervalIPsEntropy(std::chrono::microseconds intervalStartTimestamp){
  45. if(this->getDoExtraTests()) {
  46. // TODO: change datastructures
  47. std::vector<int> IPsSrcPktsCounts;
  48. std::vector<int> IPsDstPktsCounts;
  49. std::vector<double> IPsSrcProb;
  50. std::vector<double> IPsDstProb;
  51. int pktsSent = 0, pktsReceived = 0;
  52. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  53. int IPsSrcPktsCount = 0;
  54. // TODO: iter backwards and break
  55. for (auto j = i->second.pkts_sent_timestamp.begin(); j != i->second.pkts_sent_timestamp.end(); j++) {
  56. if(*j >= intervalStartTimestamp)
  57. IPsSrcPktsCount++;
  58. }
  59. if(IPsSrcPktsCount != 0) {
  60. IPsSrcPktsCounts.push_back(IPsSrcPktsCount);
  61. pktsSent += IPsSrcPktsCount;
  62. }
  63. int IPsDstPktsCount = 0;
  64. for (auto j = i->second.pkts_received_timestamp.begin(); j != i->second.pkts_received_timestamp.end(); j++) {
  65. if(*j >= intervalStartTimestamp)
  66. IPsDstPktsCount++;
  67. }
  68. if(IPsDstPktsCount != 0) {
  69. IPsDstPktsCounts.push_back(IPsDstPktsCount);
  70. pktsReceived += IPsDstPktsCount;
  71. }
  72. }
  73. for (auto i = IPsSrcPktsCounts.begin(); i != IPsSrcPktsCounts.end(); i++) {
  74. IPsSrcProb.push_back(static_cast<double>(*i) / static_cast<double>(pktsSent));
  75. }
  76. for (auto i = IPsDstPktsCounts.begin(); i != IPsDstPktsCounts.end(); i++) {
  77. IPsDstProb.push_back(static_cast<double>(*i) / static_cast<double>(pktsReceived));
  78. }
  79. // Calculate IP source entropy
  80. double IPsSrcEntropy = 0;
  81. for (unsigned i = 0; i < IPsSrcProb.size(); i++) {
  82. if (IPsSrcProb[i] > 0)
  83. IPsSrcEntropy += -IPsSrcProb[i] * log2(IPsSrcProb[i]);
  84. }
  85. // Calculate IP destination entropy
  86. double IPsDstEntropy = 0;
  87. for (unsigned i = 0; i < IPsDstProb.size(); i++) {
  88. if (IPsDstProb[i] > 0)
  89. IPsDstEntropy += -IPsDstProb[i] * log2(IPsDstProb[i]);
  90. }
  91. // FIXME: return doubles not floats
  92. std::vector<float> entropies = {static_cast<float>(IPsSrcEntropy), static_cast<float>(IPsDstEntropy)};
  93. return entropies;
  94. }
  95. else {
  96. return {-1, -1};
  97. }
  98. }
  99. /**
  100. * Calculates the cumulative entropy of the source and destination IPs, i.e., the entropy for packets from the beginning of the pcap file.
  101. * @return a vector: contains the cumulative entropies of source and destination IPs
  102. */
  103. std::vector<float> statistics::calculateIPsCumEntropy(){
  104. if(this->getDoExtraTests()) {
  105. std::vector <std::string> IPs;
  106. std::vector <float> IPsSrcProb;
  107. std::vector <float> IPsDstProb;
  108. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  109. IPs.push_back(i->first);
  110. IPsSrcProb.push_back((float)i->second.pkts_sent/packetCount);
  111. IPsDstProb.push_back((float)i->second.pkts_received/packetCount);
  112. }
  113. // Calculate IP source entropy
  114. float IPsSrcEntropy = 0;
  115. for(unsigned i=0; i < IPsSrcProb.size();i++){
  116. if (IPsSrcProb[i] > 0)
  117. IPsSrcEntropy += - IPsSrcProb[i]*log2(IPsSrcProb[i]);
  118. }
  119. // Calculate IP destination entropy
  120. float IPsDstEntropy = 0;
  121. for(unsigned i=0; i < IPsDstProb.size();i++){
  122. if (IPsDstProb[i] > 0)
  123. IPsDstEntropy += - IPsDstProb[i]*log2(IPsDstProb[i]);
  124. }
  125. std::vector<float> entropies = {IPsSrcEntropy, IPsDstEntropy};
  126. return entropies;
  127. }
  128. else {
  129. return {-1, -1};
  130. }
  131. }
  132. /**
  133. * Calculates sending packet rate for each IP in a time interval. Finds min and max packet rate and adds them to ip_statistics map.
  134. * @param intervalStartTimestamp The timstamp where the interval starts.
  135. */
  136. void statistics::calculateIPIntervalPacketRate(std::chrono::duration<int, std::micro> interval, std::chrono::microseconds intervalStartTimestamp){
  137. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  138. int IPsSrcPktsCount = 0;
  139. for (auto j = i->second.pkts_sent_timestamp.begin(); j != i->second.pkts_sent_timestamp.end(); j++) {
  140. if(*j >= intervalStartTimestamp)
  141. IPsSrcPktsCount++;
  142. }
  143. float interval_pkt_rate = (float) IPsSrcPktsCount * 1000000 / interval.count(); // used 10^6 because interval in microseconds
  144. i->second.interval_pkt_rate.push_back(interval_pkt_rate);
  145. if(interval_pkt_rate > i->second.max_interval_pkt_rate || i->second.max_interval_pkt_rate == 0)
  146. i->second.max_interval_pkt_rate = interval_pkt_rate;
  147. if(interval_pkt_rate < i->second.min_interval_pkt_rate || i->second.min_interval_pkt_rate == 0)
  148. i->second.min_interval_pkt_rate = interval_pkt_rate;
  149. }
  150. }
  151. /**
  152. * Calculates the entropies for the count of integer values.
  153. * @param current map containing the values with counts
  154. * @param an old map containing the values with counts (from last iteration)
  155. * @return a vector containing the calculated entropies: entropy of all updated values, entropy of all novel values
  156. */
  157. std::vector<double> statistics::calculateEntropies(std::unordered_map<int, int> &map, std::unordered_map<int, int> &old) {
  158. std::vector<double> counts;
  159. int count_total = 0;
  160. double entropy = 0.0;
  161. std::vector<double> novel_counts;
  162. int novel_count_total = 0;
  163. double novel_entropy = 0.0;
  164. // iterate over all values
  165. for (auto iter: map) {
  166. if (old.count(iter.first) == 0) {
  167. // count novel values
  168. double novel_count = static_cast<double>(iter.second);
  169. counts.push_back(novel_count);
  170. count_total += novel_count;
  171. novel_counts.push_back(novel_count);
  172. novel_count_total += novel_count;
  173. } else if (old.count(iter.first) != map.count(iter.first)) {
  174. // count all increased values
  175. double count = static_cast<double>(iter.second-old[iter.first]);
  176. if (count != 0.0) {
  177. counts.push_back(count);
  178. count_total += count;
  179. }
  180. }
  181. }
  182. // calculate entropy
  183. for (auto count: counts) {
  184. double prob = count / static_cast<double>(count_total);
  185. entropy += -1 * prob * log2(prob);
  186. }
  187. // calculate novelty entropy
  188. for (auto novel_count: novel_counts) {
  189. double novel_prob = novel_count / static_cast<double>(novel_count_total);
  190. novel_entropy += -1 * novel_prob * log2(novel_prob);
  191. }
  192. return {entropy, novel_entropy};
  193. }
  194. /**
  195. * Registers statistical data for a time interval.
  196. * @param intervalStartTimestamp The timstamp where the interval starts.
  197. * @param intervalEndTimestamp The timstamp where the interval ends.
  198. * @param previousPacketCount The total number of packets in last interval.
  199. */
  200. void statistics::addIntervalStat(std::chrono::duration<int, std::micro> interval, std::chrono::microseconds intervalStartTimestamp, std::chrono::microseconds intervalEndTimestamp){
  201. // Add packet rate for each IP to ip_statistics map
  202. calculateIPIntervalPacketRate(interval, intervalStartTimestamp);
  203. std::vector<float> ipEntopies = calculateLastIntervalIPsEntropy(intervalStartTimestamp);
  204. std::vector<float> ipCumEntopies = calculateIPsCumEntropy();
  205. std::string lastPktTimestamp_s = std::to_string(intervalEndTimestamp.count());
  206. std::string intervalStartTimestamp_s = std::to_string(intervalStartTimestamp.count());
  207. // The intervalStartTimestamp_s is the previous interval lastPktTimestamp_s
  208. // TODO: check with carlos if first and last packet timestamps are alright
  209. interval_statistics[lastPktTimestamp_s].start = std::to_string(intervalStartTimestamp.count());
  210. interval_statistics[lastPktTimestamp_s].end = std::to_string(intervalEndTimestamp.count());
  211. interval_statistics[lastPktTimestamp_s].pkts_count = packetCount - intervalCumPktCount;
  212. interval_statistics[lastPktTimestamp_s].pkt_rate = static_cast<float>(interval_statistics[lastPktTimestamp_s].pkts_count) / (static_cast<double>(interval.count()) / 1000000);
  213. interval_statistics[lastPktTimestamp_s].kbytes = static_cast<float>(sumPacketSize - intervalCumSumPktSize) / 1024;
  214. interval_statistics[lastPktTimestamp_s].kbyte_rate = interval_statistics[lastPktTimestamp_s].kbytes / (static_cast<double>(interval.count()) / 1000000);
  215. interval_statistics[lastPktTimestamp_s].payload_count = payloadCount - intervalPayloadCount;
  216. interval_statistics[lastPktTimestamp_s].incorrect_tcp_checksum_count = incorrectTCPChecksumCount - intervalIncorrectTCPChecksumCount;
  217. interval_statistics[lastPktTimestamp_s].correct_tcp_checksum_count = correctTCPChecksumCount - intervalCorrectTCPChecksumCount;
  218. interval_statistics[lastPktTimestamp_s].novel_ip_count = static_cast<int>(ip_statistics.size()) - intervalCumNovelIPCount;
  219. interval_statistics[lastPktTimestamp_s].novel_ttl_count = static_cast<int>(ttl_values.size()) - intervalCumNovelTTLCount;
  220. interval_statistics[lastPktTimestamp_s].novel_win_size_count = static_cast<int>(win_values.size()) - intervalCumNovelWinSizeCount;
  221. interval_statistics[lastPktTimestamp_s].novel_tos_count = static_cast<int>(tos_values.size()) - intervalCumNovelToSCount;
  222. interval_statistics[lastPktTimestamp_s].novel_mss_count = static_cast<int>(mss_values.size()) - intervalCumNovelMSSCount;
  223. interval_statistics[lastPktTimestamp_s].novel_port_count = static_cast<int>(port_values.size()) - intervalCumNovelPortCount;
  224. interval_statistics[lastPktTimestamp_s].ttl_entropies = calculateEntropies(ttl_values, intervalCumTTLValues);
  225. interval_statistics[lastPktTimestamp_s].win_size_entropies = calculateEntropies(win_values, intervalCumWinSizeValues);
  226. interval_statistics[lastPktTimestamp_s].tos_entropies = calculateEntropies(tos_values, intervalCumTosValues);
  227. interval_statistics[lastPktTimestamp_s].mss_entropies = calculateEntropies(mss_values, intervalCumMSSValues);
  228. interval_statistics[lastPktTimestamp_s].port_entropies = calculateEntropies(port_values, intervalCumPortValues);
  229. intervalPayloadCount = payloadCount;
  230. intervalIncorrectTCPChecksumCount = incorrectTCPChecksumCount;
  231. intervalCorrectTCPChecksumCount = correctTCPChecksumCount;
  232. intervalCumPktCount = packetCount;
  233. intervalCumSumPktSize = sumPacketSize;
  234. intervalCumNovelIPCount = static_cast<int>(ip_statistics.size());
  235. intervalCumNovelTTLCount = static_cast<int>(ttl_values.size());
  236. intervalCumNovelWinSizeCount = static_cast<int>(win_values.size());
  237. intervalCumNovelToSCount =static_cast<int>(tos_values.size());
  238. intervalCumNovelMSSCount = static_cast<int>(mss_values.size());
  239. intervalCumNovelPortCount = static_cast<int>(port_values.size());
  240. intervalCumTTLValues = ttl_values;
  241. intervalCumWinSizeValues = win_values;
  242. intervalCumTosValues = tos_values;
  243. intervalCumMSSValues = mss_values;
  244. intervalCumPortValues = port_values;
  245. if(ipEntopies.size()>1){
  246. interval_statistics[lastPktTimestamp_s].ip_src_entropy = ipEntopies[0];
  247. interval_statistics[lastPktTimestamp_s].ip_dst_entropy = ipEntopies[1];
  248. }
  249. if(ipCumEntopies.size()>1){
  250. interval_statistics[lastPktTimestamp_s].ip_src_cum_entropy = ipCumEntopies[0];
  251. interval_statistics[lastPktTimestamp_s].ip_dst_cum_entropy = ipCumEntopies[1];
  252. }
  253. }
  254. /**
  255. * Registers statistical data for a sent packet in a given conversation (two IPs, two ports).
  256. * Increments the counter packets_A_B or packets_B_A.
  257. * Adds the timestamp of the packet in pkts_A_B_timestamp or pkts_B_A_timestamp.
  258. * @param ipAddressSender The sender IP address.
  259. * @param sport The source port.
  260. * @param ipAddressReceiver The receiver IP address.
  261. * @param dport The destination port.
  262. * @param timestamp The timestamp of the packet.
  263. */
  264. void statistics::addConvStat(const std::string &ipAddressSender,int sport,const std::string &ipAddressReceiver,int dport, std::chrono::microseconds timestamp){
  265. conv f1 = {ipAddressReceiver, dport, ipAddressSender, sport};
  266. conv f2 = {ipAddressSender, sport, ipAddressReceiver, dport};
  267. // if already exist A(ipAddressReceiver, dport), B(ipAddressSender, sport) conversation
  268. if (conv_statistics.count(f1)>0){
  269. conv_statistics[f1].pkts_count++;
  270. if(conv_statistics[f1].pkts_count<=3)
  271. conv_statistics[f1].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics[f1].pkts_timestamp.back()));
  272. conv_statistics[f1].pkts_timestamp.push_back(timestamp);
  273. }
  274. // Add new conversation A(ipAddressSender, sport), B(ipAddressReceiver, dport)
  275. else{
  276. conv_statistics[f2].pkts_count++;
  277. if(conv_statistics[f2].pkts_timestamp.size()>0 && conv_statistics[f2].pkts_count<=3 )
  278. conv_statistics[f2].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics[f2].pkts_timestamp.back()));
  279. conv_statistics[f2].pkts_timestamp.push_back(timestamp);
  280. }
  281. }
  282. /**
  283. * Registers statistical data for a sent packet in a given extended conversation (two IPs, two ports, protocol).
  284. * Increments the counter packets_A_B or packets_B_A.
  285. * Adds the timestamp of the packet in pkts_A_B_timestamp or pkts_B_A_timestamp.
  286. * Updates all other statistics of conv_statistics_extended
  287. * @param ipAddressSender The sender IP address.
  288. * @param sport The source port.
  289. * @param ipAddressReceiver The receiver IP address.
  290. * @param dport The destination port.
  291. * @param protocol The used protocol.
  292. * @param timestamp The timestamp of the packet.
  293. */
  294. void statistics::addConvStatExt(const std::string &ipAddressSender,int sport,const std::string &ipAddressReceiver,int dport,const std::string &protocol, std::chrono::microseconds timestamp){
  295. if(this->getDoExtraTests()) {
  296. convWithProt f1 = {ipAddressReceiver, dport, ipAddressSender, sport, protocol};
  297. convWithProt f2 = {ipAddressSender, sport, ipAddressReceiver, dport, protocol};
  298. convWithProt f;
  299. // if there already exists a communication interval for the specified conversation
  300. if (conv_statistics_extended.count(f1) > 0 || conv_statistics_extended.count(f2) > 0){
  301. // find out which direction of conversation is contained in conv_statistics_extended
  302. if (conv_statistics_extended.count(f1) > 0)
  303. f = f1;
  304. else
  305. f = f2;
  306. // increase pkts count and check on delay
  307. conv_statistics_extended[f].pkts_count++;
  308. if (conv_statistics_extended[f].pkts_timestamp.size()>0 && conv_statistics_extended[f].pkts_count<=3)
  309. conv_statistics_extended[f].interarrival_time.push_back(std::chrono::duration_cast<std::chrono::microseconds> (timestamp - conv_statistics_extended[f].pkts_timestamp.back()));
  310. conv_statistics_extended[f].pkts_timestamp.push_back(timestamp);
  311. // if the time difference has exceeded the threshold, create a new interval with this message
  312. if (timestamp - conv_statistics_extended[f].comm_intervals.back().end > (std::chrono::microseconds) ((unsigned long) COMM_INTERVAL_THRESHOLD)) { // > or >= ?
  313. commInterval new_interval = {timestamp, timestamp, 1};
  314. conv_statistics_extended[f].comm_intervals.push_back(new_interval);
  315. }
  316. // otherwise, set the time of the last interval message to the current timestamp and increase interval packet count by 1
  317. else{
  318. conv_statistics_extended[f].comm_intervals.back().end = timestamp;
  319. conv_statistics_extended[f].comm_intervals.back().pkts_count++;
  320. }
  321. }
  322. // if there does not exist a communication interval for the specified conversation
  323. else{
  324. // add initial interval entry for this conversation
  325. commInterval initial_interval = {timestamp, timestamp, 1};
  326. entry_convStatExt entry;
  327. entry.comm_intervals.push_back(initial_interval);
  328. entry.pkts_count = 1;
  329. entry.pkts_timestamp.push_back(timestamp);
  330. conv_statistics_extended[f2] = entry;
  331. }
  332. }
  333. }
  334. /**
  335. * Aggregate the collected information about all communication intervals within conv_statistics_extended of every conversation.
  336. * Do this by computing the average packet rate per interval and the average time between intervals.
  337. * Also compute average interval duration and total communication duration (i.e. last_msg.time - first_msg.time)
  338. */
  339. void statistics::createCommIntervalStats(){
  340. // iterate over all <convWithProt, entry_convStatExt> pairs
  341. for (auto &cur_elem : conv_statistics_extended) {
  342. entry_convStatExt &entry = cur_elem.second;
  343. std::vector<commInterval> &intervals = entry.comm_intervals;
  344. // if there is only one interval, the time between intervals cannot be computed and is therefore set to 0
  345. if (intervals.size() == 1){
  346. double interval_duration = (double) (intervals[0].end - intervals[0].start).count() / (double) 1e6;
  347. entry.avg_int_pkts_count = (double) intervals[0].pkts_count;
  348. entry.avg_time_between_ints = (double) 0;
  349. entry.avg_interval_time = interval_duration;
  350. }
  351. // If there is more than one interval, compute the specified averages
  352. else if (intervals.size() > 1){
  353. long summed_pkts_count = intervals[0].pkts_count;
  354. std::chrono::microseconds time_between_ints_sum = (std::chrono::microseconds) 0;
  355. std::chrono::microseconds summed_int_duration = intervals[0].end - intervals[0].start;
  356. for (std::size_t i = 1; i < intervals.size(); i++) {
  357. summed_pkts_count += intervals[i].pkts_count;
  358. summed_int_duration += intervals[i].end - intervals[i].start;
  359. time_between_ints_sum += intervals[i].start - intervals[i - 1].end;
  360. }
  361. entry.avg_int_pkts_count = summed_pkts_count / ((double) intervals.size());
  362. entry.avg_time_between_ints = (time_between_ints_sum.count() / (double) (intervals.size() - 1)) / (double) 1e6;
  363. entry.avg_interval_time = (summed_int_duration.count() / (double) intervals.size()) / (double) 1e6;
  364. }
  365. entry.total_comm_duration = (double) (entry.pkts_timestamp.back() - entry.pkts_timestamp.front()).count() / (double) 1e6;
  366. }
  367. }
  368. /**
  369. * Increments the packet counter for the given IP address and MSS value.
  370. * @param ipAddress The IP address whose MSS packet counter should be incremented.
  371. * @param mssValue The MSS value of the packet.
  372. */
  373. void statistics::incrementMSScount(const std::string &ipAddress, int mssValue) {
  374. mss_values[mssValue]++;
  375. mss_distribution[{ipAddress, mssValue}]++;
  376. }
  377. /**
  378. * Increments the packet counter for the given IP address and window size.
  379. * @param ipAddress The IP address whose window size packet counter should be incremented.
  380. * @param winSize The window size of the packet.
  381. */
  382. void statistics::incrementWinCount(const std::string &ipAddress, int winSize) {
  383. win_values[winSize]++;
  384. win_distribution[{ipAddress, winSize}]++;
  385. }
  386. /**
  387. * Increments the packet counter for the given IP address and TTL value.
  388. * @param ipAddress The IP address whose TTL packet counter should be incremented.
  389. * @param ttlValue The TTL value of the packet.
  390. */
  391. void statistics::incrementTTLcount(const std::string &ipAddress, int ttlValue) {
  392. ttl_values[ttlValue]++;
  393. ttl_distribution[{ipAddress, ttlValue}]++;
  394. }
  395. /**
  396. * Increments the packet counter for the given IP address and ToS value.
  397. * @param ipAddress The IP address whose ToS packet counter should be incremented.
  398. * @param tosValue The ToS value of the packet.
  399. */
  400. void statistics::incrementToScount(const std::string &ipAddress, int tosValue) {
  401. tos_values[tosValue]++;
  402. tos_distribution[{ipAddress, tosValue}]++;
  403. }
  404. /**
  405. * Increments the protocol counter for the given IP address and protocol.
  406. * @param ipAddress The IP address whose protocol packet counter should be incremented.
  407. * @param protocol The protocol of the packet.
  408. */
  409. void statistics::incrementProtocolCount(const std::string &ipAddress, const std::string &protocol) {
  410. protocol_distribution[{ipAddress, protocol}].count++;
  411. }
  412. /**
  413. * Returns the number of packets seen for the given IP address and protocol.
  414. * @param ipAddress The IP address whose packet count is wanted.
  415. * @param protocol The protocol whose packet count is wanted.
  416. */
  417. int statistics::getProtocolCount(const std::string &ipAddress, const std::string &protocol) {
  418. return protocol_distribution[{ipAddress, protocol}].count;
  419. }
  420. /**
  421. * Increases the byte counter for the given IP address and protocol.
  422. * @param ipAddress The IP address whose protocol byte counter should be increased.
  423. * @param protocol The protocol of the packet.
  424. * @param byteSent The packet's size.
  425. */
  426. void statistics::increaseProtocolByteCount(const std::string &ipAddress, const std::string &protocol, long bytesSent) {
  427. protocol_distribution[{ipAddress, protocol}].byteCount += bytesSent;
  428. }
  429. /**
  430. * Returns the number of bytes seen for the given IP address and protocol.
  431. * @param ipAddress The IP address whose byte count is wanted.
  432. * @param protocol The protocol whose byte count is wanted.
  433. * @return a float: The number of bytes
  434. */
  435. float statistics::getProtocolByteCount(const std::string &ipAddress, const std::string &protocol) {
  436. return protocol_distribution[{ipAddress, protocol}].byteCount;
  437. }
  438. /**
  439. * Increments the packet counter for
  440. * - the given sender IP address with outgoing port and
  441. * - the given receiver IP address with incoming port.
  442. * @param ipAddressSender The IP address of the packet sender.
  443. * @param outgoingPort The port used by the sender.
  444. * @param ipAddressReceiver The IP address of the packet receiver.
  445. * @param incomingPort The port used by the receiver.
  446. */
  447. void statistics::incrementPortCount(const std::string &ipAddressSender, int outgoingPort, const std::string &ipAddressReceiver,
  448. int incomingPort, const std::string &protocol) {
  449. port_values[outgoingPort]++;
  450. port_values[incomingPort]++;
  451. ip_ports[{ipAddressSender, "out", outgoingPort, protocol}].count++;
  452. ip_ports[{ipAddressReceiver, "in", incomingPort, protocol}].count++;
  453. }
  454. /**
  455. * Increases the packet byte counter for
  456. * - the given sender IP address with outgoing port and
  457. * - the given receiver IP address with incoming port.
  458. * @param ipAddressSender The IP address of the packet sender.
  459. * @param outgoingPort The port used by the sender.
  460. * @param ipAddressReceiver The IP address of the packet receiver.
  461. * @param incomingPort The port used by the receiver.
  462. * @param byteSent The packet's size.
  463. */
  464. void statistics::increasePortByteCount(const std::string &ipAddressSender, int outgoingPort, const std::string &ipAddressReceiver,
  465. int incomingPort, long bytesSent, const std::string &protocol) {
  466. ip_ports[{ipAddressSender, "out", outgoingPort, protocol}].byteCount += bytesSent;
  467. ip_ports[{ipAddressReceiver, "in", incomingPort, protocol}].byteCount += bytesSent;
  468. }
  469. /**
  470. * Increments the packet counter for
  471. * - the given sender MAC address and
  472. * - the given receiver MAC address.
  473. * @param srcMac The MAC address of the packet sender.
  474. * @param dstMac The MAC address of the packet receiver.
  475. * @param typeNumber The payload type number of the packet.
  476. */
  477. void statistics::incrementUnrecognizedPDUCount(const std::string &srcMac, const std::string &dstMac, uint32_t typeNumber,
  478. const std::string &timestamp) {
  479. unrecognized_PDUs[{srcMac, dstMac, typeNumber}].count++;
  480. unrecognized_PDUs[{srcMac, dstMac, typeNumber}].timestamp_last_occurrence = timestamp;
  481. }
  482. /**
  483. * Creates a new statistics object.
  484. */
  485. statistics::statistics(std::string resourcePath) {;
  486. this->resourcePath = resourcePath;
  487. }
  488. /**
  489. * Stores the assignment IP address -> MAC address.
  490. * @param ipAddress The IP address belonging to the given MAC address.
  491. * @param macAddress The MAC address belonging to the given IP address.
  492. */
  493. void statistics::assignMacAddress(const std::string &ipAddress, const std::string &macAddress) {
  494. ip_mac_mapping[ipAddress] = macAddress;
  495. }
  496. /**
  497. * Registers statistical data for a sent packet. Increments the counter packets_sent for the sender and
  498. * packets_received for the receiver. Adds the bytes as kbytes_sent (sender) and kybtes_received (receiver).
  499. * @param ipAddressSender The IP address of the packet sender.
  500. * @param ipAddressReceiver The IP address of the packet receiver.
  501. * @param bytesSent The packet's size.
  502. */
  503. void statistics::addIpStat_packetSent(const std::string &ipAddressSender, const std::string &ipAddressReceiver, long bytesSent, std::chrono::microseconds timestamp) {
  504. // Adding IP as a sender for first time
  505. if(ip_statistics[ipAddressSender].pkts_sent==0){
  506. // Add the IP class
  507. ip_statistics[ipAddressSender].ip_class = getIPv4Class(ipAddressSender);
  508. }
  509. // Adding IP as a receiver for first time
  510. if(ip_statistics[ipAddressReceiver].pkts_received==0){
  511. // Add the IP class
  512. ip_statistics[ipAddressReceiver].ip_class = getIPv4Class(ipAddressReceiver);
  513. }
  514. // Update stats for packet sender
  515. ip_statistics[ipAddressSender].kbytes_sent += (float(bytesSent) / 1024);
  516. ip_statistics[ipAddressSender].pkts_sent++;
  517. ip_statistics[ipAddressSender].pkts_sent_timestamp.push_back(timestamp);
  518. // Update stats for packet receiver
  519. ip_statistics[ipAddressReceiver].kbytes_received += (float(bytesSent) / 1024);
  520. ip_statistics[ipAddressReceiver].pkts_received++;
  521. ip_statistics[ipAddressReceiver].pkts_received_timestamp.push_back(timestamp);
  522. if(this->getDoExtraTests()) {
  523. // Increment Degrees for sender and receiver, if Sender sends its first packet to this receiver
  524. std::unordered_set<std::string>::const_iterator found_receiver = contacted_ips[ipAddressSender].find(ipAddressReceiver);
  525. if(found_receiver == contacted_ips[ipAddressSender].end()){
  526. // Receiver is NOT contained in the List of IPs, that the Sender has contacted, therefore this is the first packet in this direction
  527. ip_statistics[ipAddressSender].out_degree++;
  528. ip_statistics[ipAddressReceiver].in_degree++;
  529. // Increment overall_degree only if this is the first packet for the connection (both directions)
  530. // Therefore check, whether Receiver has contacted Sender before
  531. std::unordered_set<std::string>::const_iterator sender_contacted = contacted_ips[ipAddressReceiver].find(ipAddressSender);
  532. if(sender_contacted == contacted_ips[ipAddressReceiver].end()){
  533. ip_statistics[ipAddressSender].overall_degree++;
  534. ip_statistics[ipAddressReceiver].overall_degree++;
  535. }
  536. contacted_ips[ipAddressSender].insert(ipAddressReceiver);
  537. }
  538. }
  539. }
  540. /**
  541. * Setter for the timestamp_firstPacket field.
  542. * @param ts The timestamp of the first packet in the PCAP file.
  543. */
  544. void statistics::setTimestampFirstPacket(Tins::Timestamp ts) {
  545. timestamp_firstPacket = ts;
  546. }
  547. /**
  548. * Setter for the timestamp_lastPacket field.
  549. * @param ts The timestamp of the last packet in the PCAP file.
  550. */
  551. void statistics::setTimestampLastPacket(Tins::Timestamp ts) {
  552. timestamp_lastPacket = ts;
  553. }
  554. /**
  555. * Getter for the timestamp_firstPacket field.
  556. */
  557. Tins::Timestamp statistics::getTimestampFirstPacket() {
  558. return timestamp_firstPacket;
  559. }
  560. /**
  561. * Getter for the timestamp_lastPacket field.
  562. */
  563. Tins::Timestamp statistics::getTimestampLastPacket() {
  564. return timestamp_lastPacket;
  565. }
  566. /**
  567. * Getter for the packetCount field.
  568. */
  569. int statistics::getPacketCount() {
  570. return packetCount;
  571. }
  572. /**
  573. * Getter for the sumPacketSize field.
  574. */
  575. int statistics::getSumPacketSize() {
  576. return sumPacketSize;
  577. }
  578. /**
  579. * Returns the average packet size.
  580. * @return a float indicating the average packet size in kbytes.
  581. */
  582. float statistics::getAvgPacketSize() const {
  583. // AvgPktSize = (Sum of all packet sizes / #Packets)
  584. return (sumPacketSize / packetCount) / 1024;
  585. }
  586. /**
  587. * Adds the size of a packet (to be used to calculate the avg. packet size).
  588. * @param packetSize The size of the current packet in bytes.
  589. */
  590. void statistics::addPacketSize(uint32_t packetSize) {
  591. sumPacketSize += ((float) packetSize);
  592. }
  593. /**
  594. * Setter for the doExtraTests field.
  595. */
  596. void statistics::setDoExtraTests(bool var) {
  597. doExtraTests = var;
  598. }
  599. /**
  600. * Getter for the doExtraTests field.
  601. */
  602. bool statistics::getDoExtraTests() {
  603. return doExtraTests;
  604. }
  605. /**
  606. * Calculates the capture duration.
  607. * @return a formatted string HH:MM:SS.mmmmmm with
  608. * HH: hour, MM: minute, SS: second, mmmmmm: microseconds
  609. */
  610. std::string statistics::getCaptureDurationTimestamp() const {
  611. // Calculate duration
  612. timeval fp, lp, d;
  613. fp.tv_sec = timestamp_firstPacket.seconds();
  614. fp.tv_usec = timestamp_firstPacket.microseconds();
  615. lp.tv_sec = timestamp_lastPacket.seconds();
  616. lp.tv_usec = timestamp_lastPacket.microseconds();
  617. timersub(&lp, &fp, &d);
  618. long int hour = d.tv_sec / 3600;
  619. long int remainder = (d.tv_sec - hour * 3600);
  620. long int minute = remainder / 60;
  621. long int second = (remainder - minute * 60) % 60;
  622. long int microseconds = d.tv_usec;
  623. // Build desired output format: YYYY-mm-dd hh:mm:ss
  624. char out[64];
  625. sprintf(out, "%02ld:%02ld:%02ld.%06ld ", hour, minute, second, microseconds);
  626. return std::string(out);
  627. }
  628. /**
  629. * Calculates the capture duration.
  630. * @return a formatted string SS.mmmmmm with
  631. * S: seconds (UNIX time), mmmmmm: microseconds
  632. */
  633. float statistics::getCaptureDurationSeconds() const {
  634. timeval fp, lp, d;
  635. fp.tv_sec = timestamp_firstPacket.seconds();
  636. fp.tv_usec = timestamp_firstPacket.microseconds();
  637. lp.tv_sec = timestamp_lastPacket.seconds();
  638. lp.tv_usec = timestamp_lastPacket.microseconds();
  639. timersub(&lp, &fp, &d);
  640. char buf[64];
  641. snprintf(buf, sizeof(buf), "%u.%06u", static_cast<uint>(d.tv_sec), static_cast<uint>(d.tv_usec));
  642. return std::stof(std::string(buf));
  643. }
  644. /**
  645. * Creates a timestamp based on a time_t seconds (UNIX time format) and microseconds.
  646. * @param seconds
  647. * @param microseconds
  648. * @return a formatted string Y-m-d H:M:S.m with
  649. * Y: year, m: month, d: day, H: hour, M: minute, S: second, m: microseconds
  650. */
  651. std::string statistics::getFormattedTimestamp(time_t seconds, suseconds_t microseconds) const {
  652. timeval tv;
  653. tv.tv_sec = seconds;
  654. tv.tv_usec = microseconds;
  655. char tmbuf[20], buf[64];
  656. auto nowtm = gmtime(&(tv.tv_sec));
  657. strftime(tmbuf, sizeof(tmbuf), "%Y-%m-%d %H:%M:%S", nowtm);
  658. snprintf(buf, sizeof(buf), "%s.%06u", tmbuf, static_cast<uint>(tv.tv_usec));
  659. return std::string(buf);
  660. }
  661. /**
  662. * Calculates the statistics for a given IP address.
  663. * @param ipAddress The IP address whose statistics should be calculated.
  664. * @return a ip_stats struct containing statistical data derived by the statistical data collected.
  665. */
  666. ip_stats statistics::getStatsForIP(const std::string &ipAddress) {
  667. float duration = getCaptureDurationSeconds();
  668. entry_ipStat ipStatEntry = ip_statistics[ipAddress];
  669. ip_stats s;
  670. s.bandwidthKBitsIn = (ipStatEntry.kbytes_received / duration) * 8;
  671. s.bandwidthKBitsOut = (ipStatEntry.kbytes_sent / duration) * 8;
  672. s.packetPerSecondIn = (ipStatEntry.pkts_received / duration);
  673. s.packetPerSecondOut = (ipStatEntry.pkts_sent / duration);
  674. s.AvgPacketSizeSent = (ipStatEntry.kbytes_sent / ipStatEntry.pkts_sent);
  675. s.AvgPacketSizeRecv = (ipStatEntry.kbytes_received / ipStatEntry.pkts_received);
  676. return s;
  677. }
  678. int statistics::getDefaultInterval() {
  679. return this->default_interval;
  680. }
  681. void statistics::setDefaultInterval(int interval) {
  682. this->default_interval = interval;
  683. }
  684. /**
  685. * Increments the packet counter.
  686. */
  687. void statistics::incrementPacketCount() {
  688. packetCount++;
  689. }
  690. /**
  691. * Prints the statistics of the PCAP and IP specific statistics for the given IP address.
  692. * @param ipAddress The IP address whose statistics should be printed. Can be empty "" to print only general file statistics.
  693. */
  694. void statistics::printStats(const std::string &ipAddress) {
  695. std::stringstream ss;
  696. ss << std::endl;
  697. ss << "Capture duration: " << getCaptureDurationSeconds() << " seconds" << std::endl;
  698. ss << "Capture duration (HH:MM:SS.mmmmmm): " << getCaptureDurationTimestamp() << std::endl;
  699. ss << "#Packets: " << packetCount << std::endl;
  700. ss << std::endl;
  701. // Print IP address specific statistics only if IP address was given
  702. if (ipAddress != "") {
  703. entry_ipStat e = ip_statistics[ipAddress];
  704. ss << "\n----- STATS FOR IP ADDRESS [" << ipAddress << "] -------" << std::endl;
  705. ss << std::endl << "KBytes sent: " << e.kbytes_sent << std::endl;
  706. ss << "KBytes received: " << e.kbytes_received << std::endl;
  707. ss << "Packets sent: " << e.pkts_sent << std::endl;
  708. ss << "Packets received: " << e.pkts_received << "\n\n";
  709. ip_stats is = getStatsForIP(ipAddress);
  710. ss << "Bandwidth IN: " << is.bandwidthKBitsIn << " kbit/s" << std::endl;
  711. ss << "Bandwidth OUT: " << is.bandwidthKBitsOut << " kbit/s" << std::endl;
  712. ss << "Packets per second IN: " << is.packetPerSecondIn << std::endl;
  713. ss << "Packets per second OUT: " << is.packetPerSecondOut << std::endl;
  714. ss << "Avg Packet Size Sent: " << is.AvgPacketSizeSent << " kbytes" << std::endl;
  715. ss << "Avg Packet Size Received: " << is.AvgPacketSizeRecv << " kbytes" << std::endl;
  716. }
  717. std::cout << ss.str();
  718. }
  719. /**
  720. * Derives general PCAP file statistics from the collected statistical data and
  721. * writes all data into a SQLite database, located at database_path.
  722. * @param database_path The path of the SQLite database file ending with .sqlite3.
  723. */
  724. void statistics::writeToDatabase(std::string database_path, std::vector<std::chrono::duration<int, std::micro>> timeIntervals, bool del) {
  725. // Generate general file statistics
  726. float duration = getCaptureDurationSeconds();
  727. long sumPacketsSent = 0, senderCountIP = 0;
  728. float sumBandwidthIn = 0.0, sumBandwidthOut = 0.0;
  729. for (auto i = ip_statistics.begin(); i != ip_statistics.end(); i++) {
  730. sumPacketsSent += i->second.pkts_sent;
  731. // Consumed bandwith (bytes) for sending packets
  732. sumBandwidthIn += (i->second.kbytes_received / duration);
  733. sumBandwidthOut += (i->second.kbytes_sent / duration);
  734. senderCountIP++;
  735. }
  736. float avgPacketRate = (packetCount / duration);
  737. long avgPacketSize = getAvgPacketSize();
  738. if(senderCountIP>0) {
  739. long avgPacketsSentPerHost = (sumPacketsSent / senderCountIP);
  740. float avgBandwidthInKBits = (sumBandwidthIn / senderCountIP) * 8;
  741. float avgBandwidthOutInKBits = (sumBandwidthOut / senderCountIP) * 8;
  742. // Create database and write information
  743. statistics_db db(database_path, resourcePath);
  744. db.writeStatisticsFile(packetCount, getCaptureDurationSeconds(),
  745. getFormattedTimestamp(timestamp_firstPacket.seconds(), timestamp_firstPacket.microseconds()),
  746. getFormattedTimestamp(timestamp_lastPacket.seconds(), timestamp_lastPacket.microseconds()),
  747. avgPacketRate, avgPacketSize, avgPacketsSentPerHost, avgBandwidthInKBits,
  748. avgBandwidthOutInKBits, doExtraTests);
  749. db.writeStatisticsIP(ip_statistics);
  750. db.writeStatisticsTTL(ttl_distribution);
  751. db.writeStatisticsIpMac(ip_mac_mapping);
  752. db.writeStatisticsDegree(ip_statistics);
  753. db.writeStatisticsPorts(ip_ports);
  754. db.writeStatisticsProtocols(protocol_distribution);
  755. db.writeStatisticsMSS(mss_distribution);
  756. db.writeStatisticsToS(tos_distribution);
  757. db.writeStatisticsWin(win_distribution);
  758. db.writeStatisticsConv(conv_statistics);
  759. db.writeStatisticsConvExt(conv_statistics_extended);
  760. db.writeStatisticsInterval(interval_statistics, timeIntervals, del, this->default_interval, this->getDoExtraTests());
  761. db.writeDbVersion();
  762. db.writeStatisticsUnrecognizedPDUs(unrecognized_PDUs);
  763. }
  764. else {
  765. // Tinslib failed to recognize the types of the packets in the input PCAP
  766. std::cerr<<"ERROR: Statistics could not be collected from the input PCAP!"<<"\n";
  767. return;
  768. }
  769. }
  770. void statistics::writeIntervalsToDatabase(std::string database_path, std::vector<std::chrono::duration<int, std::micro>> timeIntervals, bool del) {
  771. statistics_db db(database_path, resourcePath);
  772. db.writeStatisticsInterval(interval_statistics, timeIntervals, del, this->default_interval, this->getDoExtraTests());
  773. }