Hybrid Online
Social Networks

Masterarbeit von Carsten Porth
Tag der Einreichung: 13. Marz 2019

1. Gutachter: Prof. Dr. Max Muhlhauser
2. Gutachter: Jorg Daubert, Aidmar Wainakh

Darmstadt, den 13. Méarz 2019

2

Telecooperation Lab

TECHNISCHE
UNIVERSITAT
DARMSTADT

Fachbereich Informatik
Telekooperation
Prof. Dr. Max Mihlhduser

Abstract

Zusammenfassung

Contents
1 Introduction 1
1.1 MOtivationt et e 1
1.2 Challenge e e 1
1.3 Research QUeStion i i i it e e e e 1
1.4 Outline e 1
2 Background 3
2.1 Software System Architecture 3
2.1.1 Centralized Applications 3
2.1.2 Decentralized Applications e 4
2.1.3 Distributed Applications 5
2.1.4 ComPaAriSON v v vt et e e e e e e e e e e e e e e e e e 5
2.2 Peer-to-Peer Networks i e 6
2.2.1 Unstructured P2P e 6
2.2.2 Structured P2P e 7
2.3 Web 3.0 - Distributed Apps (dAPPS) - « - « « v vt o i e e e 8
2.4 SUMMALY . . . ot vttt e e e e e e e e e e e e e e e e 8
3 Related Work 9
3.1 Privacy through Extensions 9
3. 1.1 TWILEETIZE . . . o v ot o e 9
3.1.2 FaceCloak e 12
3.2 Privacy-protecting Social Networks o ... 15
3.2.1 diaspora® e e e e e e e e e 15
3.2.2 LifeSocia.LKOM e 16
3.3 dApps - The Next Generation Social Networks 16
3.3.1 Akasha e 16
3.3.2 Peepeth. e 17
3.4 Protocols i e e e e e e 20
3.4.1 ActivityPub 20
3.5 SUMMATY o i e e e e e e e e e e e e e e e e e e 22
4 Concept of a Hybrid Online Social Network 23
4.1 Requirements to the Hybrid OSN, 24
4.2 Stakeholders 24
4.3 ReSIICLIONS . . . ¢ v v v et e 26
4.4 QualityGoals. e 26
4.5 Solution Strategy - Architecture 27
4.6 Solution Strategy - Client 28

4.7 SUMMALY . . . o o vttt e e et e e et e e e e e e e e e e e 29

5 Proof of Concept 31
5.1 ODbJective . . . o v it e e e e e e 31
5.2 Selection of the OSN e 31
5.3 Technology Decisions v i it it i e e e e 33
5.3.1 Peer2Peer Network ittt 33

5.3.2 Using an Existing P2P Network 35

5.3.3 Application Framework e 36

5.4 Building Block View e 36
5.4.1 Scopeand CONteXt v v it v ittt et e et et e e e 36

5.4.2 White Box View e e 36

5.5 Runtime VIEW e e e 39
5.5.1 PostaTweet. e e e 40

5.5.2 Load the Home Timeline 42

5.6 SeCUrity o v it e e e e e e e e 44
5.6.1 Realizationt e 45

5.7 Providing Insights to the Service Provider 46
5.8 Summary e e e e e e e 46

6 Evaluation 49
7 Conclusions 51
7.1 SUMIMATY o ot e e e e e e e e e e e e e e e e 51
7.2 Contributions e e e 51
7.3 Future Work e 51
List of Figures 53
List of Tables 55

Bibliography 57

1 Introduction

1.1 Motivation

1.2 Challenge

1.3 Research Question

1.4 Outline

2 Background

2.1 Software System Architecture

The software system architecture describes the relationships and properties of individual soft-
ware components. It is a model that describes a software on a high-level design. The structure
of an architecture can be represented mathematically as a graph, with the nodes representing
the individual software components and the edges their relationships to each other. Although
the individual components can be executed on the same computer, they are usually intercon-
nected via networks. In general, a distinction is made between centralized, decentralized and
distributed architectures as shown in Figure 2.1.

} // & >Z“--
' // -\H /N

(A) Centralized (B) Decentralized (C) Distributed

Figure 2.1: Schematic representation of various software system architectures. In centralized
applications (A), all clients (blue) are in connection with a central server (red), while
in decentralized applications (B) several servers provide for improved stability. In
distributed applications (C), all nodes have the same role with the same tasks, which
is why we also speak of peers (green).

In the following, the characteristics and peculiarities of the different architectures are described
in detail.

2.1.1 Centralized Applications

In a centralized application, the software essentially runs on a central node with a static address
with which all other nodes communicate. This central node is called a server and the nodes
connected to it are called clients. The clients use services of the server.

Typically, most web applications are designed as centralized applications. The clients are usually
(mobile) apps or browsers that act as the interface to the user. Examples of this are social
networks such as Facebook.

The advantages of such an architecture include that new clients can easily join the system sim-
ply by connecting to the server. Also, the maintenance of the software is easy to perform, since
only the server node needs to be updated. Such structures are also advantageous for the speed
and the associated user experience since servers are generally reachable via fast connections,
have sufficient resources and do not need to use complicated routes across several nodes. Due
to the special role of the server, the authentication of a client in the system is easy to perform.
Only the server has to check whether the client only performs the actions to which it is autho-
rized and can intervene if necessary. If a client is offline, this has no negative impact on the
architecture. Because the software essentially runs on the server, clients only need to have low
resources.

The biggest disadvantage with this architecture is that with the failure or the blockade of the
server, the entire system collapses. So, the server is the single point of failure of the whole
system. Due to the design, the server has all the data. This makes him not only a popular target
for hackers but also brings the clients into total dependency on the server. Having access to all
the data can be used to provide an improved user experience by adapting the software to the
user’s needs. But it can also be used for targeted advertising or sensible data can even get sold
to third parties. Furthermore, the server decides which data to send to the client, which brings
with it the danger of censorship. As the number of clients increases, the server must scale to
have sufficient resources.

2.1.2 Decentralized Applications

What are advantages and disadvantages of centralized applications is largely reversed in decen-
tralized systems. Unlike centralized applications, decentralized applications do not have a single
point of failure. But there is no node in the system that has all the data which makes accessing
information sometimes hard. There are any number of nodes that perform the tasks of a server
and by exchanging with other servers in total form a complete system.

Thus, the advantages of decentralized applications include, in addition to the already mentioned
increased reliability, even further advantages. Each server only records the amount of users cov-
ered by its resources. New servers contribute new resources to the overall system. Distributed
applications can not be disabled easily because a new server can be started at any time that does
not fall under a lock. Because the data are not centrally available, they can not be processed,
so that user data are better protected. Also, there is no longer a prominent attack target. So,
hacking a single server loses lucrativeness.

The drawbacks include the difficulty of finding data because they are spread across multiple
servers. Search functionalities are thus difficult to implement. If a server is taken offline, the
data is no longer available, even if the system itself remains functional. Since there is no longer
a central point that is managed by an operator, rolling out updates is difficult. This raises the
challenge that server nodes of different versions can still work together.

4 2 Background

Examples of decentralized applications are the social networks Diaspora and Mastodon. Each
user can operate his own server in these networks. Unlike Facebook, the decision on the ex-
istence of the service is therefore not in the control of the operator, but the user. Bitcoin is
also a decentralized application architecture. In doing so, transactions are carried out in a
decentralized database (blockchain).

2.1.3 Distributed Applications

A feature of distributed applications is the distributed computation across all nodes. At the same
time, a single task is executed in parallel on several nodes of a system, and the entire system
delivers the result in total.

In distributed applications, there is no hierarchy with servers or clients. Each node is equal to
the other nodes with everyone performing the same tasks. This is why a node in this architecture
is called peer. The structure is then referred to as peer to peer (P2P). With such structures, there
are no scaling problems, since each node contributes the required resources itself. Thus, the
resources of the entire system grow with each new node added.

BitTorrent is an application that belongs to this architecture type. It solves the problem of
downloading large files efficiently When downloading a file, it is offered by several nodes,
so that different pieces can be loaded in parallel from different sources in difference to HTTP
where only one source provides the file. Each node not only downloads, but also provides
itself to other files. In order to avoid that nodes download only (so-called Leechers) but also
contribute, they are penalized with slow download speeds. This principle is known as tit for
tat.

2.1.4 Comparison

The following table 2.1 compares the main features of the different architectures as described
before.

Centralized Systems | Decentralized Systems | Distributed Systems
Scalability + ++
Maintenance ++ +
System + e
Stability
Performance ++ +
Data
Availability T *

Table 2.1: Comparison of different software system architectures on scalability, maintenance,
system stability, performance and data availability. The pluses indicate how positive
something is relatively to the other systems.

2.1 Software System Architecture 5

2.2 Peer-to-Peer Networks

The special feature of peer to peer (P2P) System is that each participant has the role of both
a server and a client. The participants are therefore equal with each other and provide each
other with services, which is reflected in the naming. P2P networks are usually characterized
as overlay networks over the Internet. With regard to the structure of the overlay network, a
distinction is made between structured and unstructured networks. The P2P principle became
particularly well known in 1999 with Napster. With the file-sharing application Napster, it was
possible to exchange (mainly copyrighted) songs among the participants without having to offer
them from a central server.

Popular applications of P2P networks are file sharing (e.g. BitTorrent), instant messaging (e.g.
Skype) and blockchain technology (e.g. Bitcoin).

P2P networks are particularly characterized by their independence. There are no control points
and not necessarily a fixed infrastructure. This also has a positive effect on operating costs. In
addition, P2P networks are self-organized and self-scaling, as each additional user contributes
its resources.

However, there are also some challenges in P2P networks that need to be solved for successful
operation. These include finding peers in the network (peer discovery) and finding resources
(resource discovery). Especially in file sharing networks, solutions have to be found how to
motivate users to upload data and not only use the download one-sidedly. The replication
of data and the associated availability must also be taken into account in solutions. Another
critical issue is the Internet connection of individual participants, which may not be powerful or
permanent.

2.2.1 Unstructured P2P

In unstructured P2P networks there are no specifications for the overlay network, so the peers
are only loosely connected to each other. Due to the loose structures, the failure of one peer
has no great influence on the function of the rest of the network. Another advantage of the
unstructured topology is the lower vulnerability.

While such loose structures are easy to create, the performance of the entire network suffers.
A multicast request is sent to all connected peers, who forward the request again and flood
the entire network. If a peer can respond to the request, it responds by the same route that
the request used to reach it. Each request has a validity time (time to live, TTL) before it
is discarded. Popular files with wide distribution can thus be found quickly. However, rare
files are difficult to find because the TTL may have been reached before. A flooding search is
not efficient and provides a large amount of signaling traffic. An example for this approach is
Gnutella.

In order to counteract the problem of inefficient and complicated searching for resources, cen-
tral points are created in other network implementations where addresses of resources can be
specifically requested. These include Napster, FastTrack and BitTorrent. Figure 2.2 shows a
comparison of the search process in the respective networks.

6 2 Background

Peer Server Peer Peer
/_\\ —1. Query—» /"\ / A\ —1a. Query—» /B\
\ / -2 Response—\/ \ / -4, Response—\ /
| - I
o @ o o) o I's)
5§ a5 S, B8¥ &P
@© < &/ 8 =
_‘_r v_ e\ml _ \j
4 B\' e D\ ./ C
N \/ \/
Napster Gnutella v0.4
Peer Superpeers Peer Tracker
/A\ —1. Query—» f\ /A\ —1. Query—»
/ 2. Response— / -2 Response—&
L, NI
g9 S0 %, ‘%, Swarm
- C) o P .
N \ /
. B) AN " C (B (C) “\
\/' \""'l‘i_/ __,/ \ /
FastTrack / Gnutella v0.6 BltTorrent

Figure 2.2: Search process in unstructured P2P systems [9]

2.2.2 Structured P2P

By defining a certain structure, for example a circle or a tree, search processes in the overlay
network can be designed efficiently and deterministically. In such structured networks, com-
pliance with the structure is strictly controlled. Routing algorithms determine how a node is
arranged in the overlay network. The performance of the entire network depends directly on
how the nodes are arranged and how quickly changes (joining and leaving nodes) are responded
to.

Usually the routing algorithms are based on a Distributed Hash Table (DHT). Hash tables are
data structures in which key-value pairs are stored, whereby the key must be unique. The
corresponding value can then be queried via the key. The keys are ids, which are generated
with a hash function (e.g. SHA-1). For the addresses of the nodes and for the files, ids are
created equally, so that they lie in the same address space. To find a file, it is searched at the
node with the same or the next larger id. If it is not available there, it is not existing on the
network.

To join a network, either one or more peers must be known as the entry point or this information
must be obtained from a bootstrap server. When entering a structured network, the joining node

2.2 Peer-to-Peer Networks 7

is assigned a unique id and thus positions itself in the structure. The routing tables of the nodes
affected by the structural change must then be updated.

When leaving a network, this happens either gracefully and all affected nodes are informed to
update their routing tables, or unexpectedly. Therefore, nodes must always check the correct-
ness of their routing tables.

Known routing algorithms that use DHTs include Chrod[16], CAN[10], Pastry[12], Tapestry[18]
and Kademlia[8]. Among other things, they differ in their distinct structure and the hash func-
tions used.

2.3 Web 3.0 - Distributed Apps (dApps)

2.4 Summary

8 2 Background

3 Related Work

This chapter gives a comprehensive overview about different projects trying to protect the users’
personal data in online social networks. Hereby, six different approaches are presented. First,
extensions are considered that make the use of established social networks more secure. Then,
alternative social networks will be presented that have placed the protection of personal data at
the center. Thereafter two next generation social networks will be considered, which take ad-
vantage of the blockchain technology and belong to the group of dApps. Finally, the ActivityPub
protocol is presented, which maps the communication in decentralized platforms. The chapter
concludes with a summary of the related work.

3.1 Privacy through Extensions

Existing connections to other people and already created content can bind users to platforms.
This so-called lock-in effect prevents users from switching to another platform. In the following,
Twitterize and FaceCloak are two approaches that make the use of Twitter and Facebook safer
by protecting data.

3.1.1 Twitterize

With Twitterize, Daubert et al. present an approach on how data can be protected by a special
overlay network and anonymously exchanged within a social network[7]. The proposal refers
to micro-blogging social networks such as Twitter. For this, a proof of concept in the form of an
Android app was developed.

Design Principles

Daubert et al. made various demands on the proposed solution. With regard to the protection
of privacy in general:

* Confidentiality: Messages exchanged between sender and receiver should be transmitted
secretly.

* Anonymity: A certain user should not be identifiable within a set of users (anonymity set).
And with regard to the design of the implementation:

* Understandable privacy: The user should decide for himself which level of privacy pro-
tection he chooses for his messages. The system should communicate this in an under-
standable way.

* Simple group management: Group memberships should be managed quickly and easily.

9

* Low overhead: The client should have the full functionality of the original client and have
as little overhead as possible for the extended functionality.

Architecture

The basic idea behind Twitterize is the encrypted, anonymous exchange of messages within a
group via an overlay network. There is a group-specific hashtag for this. The messages are for-
warded in the underlay network by users until they reach the recipient.

In order to establish communication within a group, the three following phases must be passed
through one after the other:

1. Generating and exchanging the keys of a hashtag
2. Flooding and subscribing to build an overlay network
3. Exchanging of messages

First, a user must define the hashtag and generate a key for symmetric encryption. This key
is used later to encrypt the messages as well as the hashtag itself. From the encrypted hash-
tag only a hash value is used (so-called pseudonym), so that the actual hash tag is not re-
vealed.

In order join the group, other users need the key and knowledge of the name of the hashtag.
However, the key exchange should not be carried out via the social network used. An exchange
via e-mail, NFC, QR codes, etc. is conceivable.

If the users of a group with a common hashtag are all aware of the key and the hash tag, the
second phase of building an overlay network begins. Here the private flooding mechanism is
used[6]. A publisher creates an advertisement tweet consisting of a pseudonym and the first
element of a hash chain and posts it in the underlay network. This tweet appears in the timelines
of his followers. If not already done, each follower distributes the advertisement tweet on his
own timeline and thus reaches his own followers. However, this tweet differs from the original
tweet by extending the hash chain. It generates a hash of the previous hash chain and thus
receives the next element of the chain. According to this principle, the entire network is flooded
and as a result, each user saves a triplet consisting of pseudonym, hash chain and the user before
him in the chain in a database table.

If the advertisement tweet reaches a user who is aware of the hashtag and the associated key,
the user (so called subscriber) responds with a subscription tweet. This message is addressed to
the user from whom the advertisement tweet was received and contains the user name (@user)
and the pseudonym. The user thus addressed in turn posts a message consisting of the user
name of the user from whom he received the advertisement tweet and the pseudonym. This
happens until the original publisher has been reached. In this process, another routing table is
filled with pseudonym and sending user. The overlay network is thus formed. Since each user
only has a local view of the message flow, no conclusions about sender and recipient can be
drawn from the message flow.

10 3 Related Work

In the third phase, users can exchange messages using the previously shared hashtag. The
messages are encrypted with the key belonging to the hashtag and then posted together with
the hashtag to the timeline. By posting the message again, forwarders ensure that the mes-
sage is forwarded to the recipient. The exact procedure is shown schematically in Figure
3.1

Publisher P Forwarder F Subscriber S
Create notification PullTweetTask PullTweetTask
)
...................... ﬂ 3
~
Encrypt N Y A e I I I SR N
3 :

! | Dispatcher
A

———— : Seen
's‘fitc El :>before?

¥ — ¥.... Hl || YA —8M ¥ooei .. H
SendTweetTask @no @no
I I [v s, - A gl [y e e .
g § gl |: Decrypt<j of § ol |: Decrypt<j of
- s HNE N N interest? i s E R E N N interest? i
\/ .:___ -E ------ pr— - : -S ------ p— mm SasEEEEEEEEEEEEE -
DB 2| & g2
- o [«
W
7]
H
o
f~4
W
w
store store
2
o
. S
Twitter v
ki [Sl = sssvsssassssacsntsennssennsvend fasvis Sl T I T L S
: Timeline gratus i Timeline 1 garys i Timeline £ satus
L fupdates J L ¢ i f updates N\ 7 ii s i updates
: i | Notification [+ | Notif. |i| Notification [2 Notif. | i

Figure 3.1: Information flow of a notification. The notification is created, encrypted and posted
to the publisher’s timeline. The notification is then picked up by a forwarder who
follows the publisher. Next, the status update is being processed and finally posted
on the forwarder’s timeline. Lastly, the subscriber who follows the forwarder receives
the notification. [7]

Proof of Concept

As proof of concept, Daubert et al. implemented Twitterize as an app for Android. The app
was written in Java, the code remained closed source and the app is not available from the
Google Play Store. The representation of the data in the app takes place on different timelines.
In addition to the normal home and user timelines, each hash tag gets its own timeline. Each
timeline is accessible via a tab.

3.1 Privacy through Extensions 1

For encryption 128bit keys with AES CBC is used. The keys are exchanged between the users via
NFC or QR codes. Since data structures, such as JSON, are too verbose, the tweets are encoded
using Base64. To make message types distinguishable, rarely used UTF-8 symbols are used to
give the messages a rough structure. The formation of the overlay network and the exchange of
messages then works as described above.

The privacy requirements are met by the design of the Twitterize architecture. The other re-
quirements for implementation were also well received during the development of the app.
With the exchange of keys via NFC or QR codes an easy way for key management was
found and implemented. Just a few seconds of physical proximity are enough to form a

group.

The avoidance of overheads was also successful, although the timeline is updated in background
every minute. CPU usage and power consumption were only slightly above the values of the
original Twitter app. For the storage of the additional data only little space is necessary, since
each hash tag occupies only 48 byte. Assuming that in the Twitter Social Graph two arbitrary
users are connected via 4.71 following users in between, an average delivery time of 142 seconds
was calculated for a message.

Restrictions arise on the one hand due to limits on the use of the Twitter API and on the other
hand due to the fact that the application must be always online to get the best user experi-
ence.

3.1.2 FaceCloak

Researchers Luo, Xiu and Hengartner of the University of Waterloo in Ontario propose an ar-
chitecture to protect personal information from social networking platforms. This is achieved
by transmitting fake data to the social network server and storing the correct data encrypted
on a third party server. Authorized users can then replace the fake data with the correct data
when they visit the site containing protected data. The prerequisite is that all users use a spe-
cific browser extension that communicates with the third party server and replaces content. In
concrete terms, this was implemented for Facebook and both a server and an extension for the
Firefox browser were developed and successfully tested.

Design Principles

FaceCloak’s design is based on the following four principles:

* Preservation of normal browsing experience: In order to provide the best possible user
experience, the solution should function largely automatically and require only a minimum
of interaction.

* No server-side changes: The mechanism for protecting personal data should not require
any server-side changes.

12 3 Related Work

* Self-containment and minimal user configuration: Regardless of the technical abilities

of a user, the configuration effort (e.g. the installation of a certain software) should be
limited to a minimum and be feasible by everyone.

* Incremental deployment: Compatibility between users with and without using the special

extension should always be ensured and should never prevent users from no longer being
able to contact each other.

FaceCloak Architecture

After validating several available solutions for personal data protection, the researchers decided

that a client-side architecture was the best solution for automated protection. Figure 3.2 shows
this architecture schematically.

]
i 'lrll!rpj!

/ 4
/ S " Facebook
F e P
f N e
;’ 2 %%‘% f*‘y 3
{ N e : .
keys | 1 encrypted reaf‘%ﬁ,% ~~ fake information
| , . »
\ information -
\ N
\ P N
“%&‘ P4 g x"‘%%
\ . \,
4 7 L
. | /vsf *&%&7
£

3 encrypted real
information

Third party

Figure 3.2: Schematic representation of the Setup Phase (1), Encryption Phase (2) and Decryp-
tion Phase (3) and the data flow taking place between the entities.

During the setup phase, the browser extension is being installed and the encryption keys are
generated. Afterwards the keys for decryption are shared with the trusted contacts. In phase
two, when data worthy of protection is stored, it is transmitted in encrypted form to a third
party server and stored there. Only fake data is transmitted to the social network server.
In phase three, whenever an authorized contact calls up a profile page and fake data is

transmitted by the social network, the extension takes care of the replacement with the real
data.

In addition to adhering to the above design principles, the proposed architecture makes the
following contributions:

* The functionality of the service and the interface is not limited by the use of FaceCloak.
* The user decides which information should be protected and which not.

* The architecture can be applied to any social network.

3.1 Privacy through Extensions 13

FaceCloak for Facebook

To protect the privacy of Facebook users, Luo, Xiu and Hengartner have developed a Firefox
browser extension according to the previously described architecture, as well as a server appli-
cation for storing encrypted real data.’

To encrypt the data, the extension uses AES and a key length of 128 bits. The indices for the
encrypted data are calculated using SHA-1. The authors propose e-mail for the key exchange.
For this purpose, the browser extension automatically generates e-mail texts and recipient lists
and forwards them to the standard e-mail program. The recipients then have to manually store
the received keys in the extension.

In order to protect data with FaceCloak, the prefix @@ must be added to information in a
text field. For other form elements such as dropdowns, radio buttons or checkboxes, the ex-
tension creates additional options that also start with @@. When submitting the form, the
extension intervenes and replaces the data marked with @@ with fake data. The data to
be protected is encrypted with the stored keys and transferred as key-value pair to the third
party server where it is stored. All profile information can be protected by FaceCloak, but
only for name, birthday and gender algorithms for the meaningful creation of fake data are
implemented.

In addition to profile information, the extension can also protect Facebook Wall data and Face-
book Notes. To avoid attracting attention with random, unusual character strings, the contents
of random Wikipedia articles are transmitted as fake data.

When loading a profile page that contains protected data, the extension with asynchronous
HTTP requests retrieves the information from the third party server, decrypts it, and replaces
the fake data. A large part of the replacement can thus be performed during the load process, so
that the user does not see the fake data. But since Facebook also loads content asynchronously,
some replacements can only be performed with a time delay and the fake data is shortly visi-
ble.

To use the same account on multiple devices, the keys must be transferred to all devices and
stored in the extension. It is not possible to use multiple accounts with the same Firefox pro-
file, as all data is stored in the extension and these are always bound to exactly one Facebook
account.

The latest version 0.6 from August 2010 cannot be installed in the current Firefox (version 65).
Furthermore, it is not known if the server is still running. Therefore it is not possible to check
if the extension still works. Due to the numerous updates and sometimes serious changes that
Facebook has experienced in the last 8 years, it is very unlikely that the extension will still
work today. At that time, however, it was successfully applied and proved that the proposed
architecture worked.

! Download: https://crysp.uwaterloo.ca/software/facecloak/download.html

14 3 Related Work

3.2 Privacy-protecting Social Networks

3.2.1 diaspora*

Inspired by a lecture on surveillance in centralized social networks by Eben Moglen on February
5, 2010, the four mathematics students from New York University Grippi, Salzberg, Sofaer and
Zhitomirskiy had the idea for diaspora*[13]. Diaspora* is a decentralized social network. To its
special features count:

* Decentralization: Everyone can start their own server with the diaspora* software and
be part of the network. Alternatively, there are public servers accepting registrations from
everyone, so there is no need to set up an own instance of diaspora* to participate in the
network.

* Privacy: By running your own server, the data remains with the user. Furthermore, it is
possible to determine which users can see content.

e Open Source: The source code is disclosed and hosted on GitHub?. The transparency
created in this way ensures trust in diaspora*.

To fund the development of diaspora*, $ 10,000 should be crowdfunded on Kickstarter®. The
project was very well received, so that after 14 days the target was reached[14] and in the
end a total of $ 200,641 was donated. In November 2010, the first alpha version of di-
aspora* was released. One year later there was a big feature update. In May 2012 it
was announced that diaspora* should be further developed within the Y Combinator start-
up program[4]. Due to the commercial influence there were fears that diaspora* could lose
its independence. In August 2012, the developers announced that diaspora* is henceforth a
community project[5].

The diaspora* back end is written in Ruby, the front end to the user is a website. A server run-
ning diaspora* is called pod. Each pod has its own domain, so users of a pod have a username
similar to an e-mail address (for example, username@podname.org). The typical functionalities
of a social network (hashtags, @ mentions, likes, comments, private messages) are also shown
in diaspora*. What marked a peculiarity at the time of diaspora*’s appearance are so-called as-
pects. Aspects are groupings of contacts that can be specified as a target audience when posting
content. Only the contacts associated with the aspect can see the post.

To stay in contact with friends on other platforms like social networks (Facebook, Twitter) or
blogs (tumblr, Wordpress), the initial idea was to connect these platforms. This should work
both ways. Posts published on diaspora* should also appear on other platforms at the same time.
And posts from the other networks should be viewed in diaspora*. Diaspora* should play the
role of a social media hub. Unfortunately, the APIs of some platforms have become increasingly
limited as instances of misuse of the interfaces have become public.

2
3

https://github.com/diaspora/diaspora
https://www.kickstarter.com/projects/mbs348/diaspora-the-personally-controlled-do-it-all-distr/description

3.2 Privacy-protecting Social Networks 15

The data of the users are unencrypted on a pod, so that someone having access to the database
can see them[2]. In order to protect his own data in the best possible way, the operation of
a separate diaspora* instance is necessary. The communication between the pods is encrypted
with SSL[2]. Furthermore, the exchanged messages are first signed (Salmon Magic Signatures),
then symmetrically encrypted with AES-256-CBC[3]. The AES key is encrypted with the public
key of the recipient and sent together with the encrypted message.

Diaspora* does not use the ActivityPub protocol, but its own diaspora* federation protocol[1].
Other platforms such as Friendica*, Hubzilla® or Socialhome® can also communicate via the
diaspora* federation protocol. There is no official API, which makes app development difficult.
Diaspora* points out that the website is also usable on mobile devices, so there is no need for a
native application[2].

According to the statistics of the-federation.info’ on February 24, 2019, 679723 users were
registered on a total of 251 pods. Over the last 12 months, 19591 new users have joined the
network. In January 2019, only 4.4% of all users were active with 30042 users. However, the
numbers are incomplete, as some pods do not share information and there may be more than
the 251 listed pods.

3.2.2 LifeSocial.KOM

3.3 dApps - The Next Generation Social Networks

3.3.1 Akasha

In early 2015, Mihai Alisie (co-founder of Ethereum) had the idea for AKASHA. AKASHA is
a social network that differs from other known social networks mainly in its decentralization.
The absence of a central server meant that censorship was ruled out by the design alone. This
is realized by the two technologies Ethereum and the Inter-Planetary File System (IPFS). The
technology stack is completed by Electron, React, Redux and NodeJS, so that the primary pro-
gramming language is JavaScript. In addition to Mihai Alisie, 12 other employees now work
at AKASHA. Furthermore, the founders of Ethereum (Vitalik Buterin) and IPFS (Juan Benet)
advise the project.

Alisie sees AKASHA as ,,the missing puzzle piece that will enable us to tackle two of the most
important challenges we face today as a modern information-based society: freedom of expres-
sion and creative perpetuity”. The central goal is therefore to prevent censorship and to obtain
information over a long period of time.

«Describe what AKASHA can do»

https://friendi.ca/
https://zotlabs.org/page/hubzilla/hubzilla-project
https://socialhome.network/
https://the-federation.info/diaspora

N o b

16 3 Related Work

After the idea had been validated by a proof of concept, the above-mentioned technology stack
was defined and development began at the beginning of 2016. The first goal was to develop a
client based on Electron for Windows, Linux and MacOS. In January 2017, the first functional
alpha version was completed and tested with a closed circle of users. Over time, additional
functions were added, bugs fixed and performance optimized. In November 2017, a web version
of AKASHA® was introduced. This was a big step towards a better user experience since the web
client does not need to download the Rinkeby blockchain which took around 30 minutes on
first run. The public beta phase started in February 2018 with the primary goal to see how the
application behaves under heavy load.

With the announcement of the web version, the team behind AKASHA also released plans for
their own AETH token. This token should have the special feature that it can take different
states. The state transition from one state to the other is only possible as shown in Figure 3.3.
The developers describe the states as follows:

* AETH is a transferable, ERC 20 compatible token, living on the Rinkeby test network

* Mana is non-transferable and is obtained by locking AETH for X time at Y ratio (Manafied
AETH). The Mana amount regenerates every day for as long as AETH remains locked, in a
,2Manafied“ state.

* Essence is non-transferable and is obtained through positive contributions. It can be
burned to mint new AETH into existence. When people use their Mana to vote on arti-
facts, the authors can collect the burned Mana as Essence.

* Karma is not a state, but rather a score tracking user contributions. For every unit of
Essence collected, the user receives also Karma. Karma is used for defining milestones,
thresholds and unlocking functionality within the dapp.

After a long period of silence, the entire project was converted in January 2019, almost three
years after the start. The domain was changed from akasha.world to akasha.org and the focus
shifted from a social network to an umbrella organization that unites several projects. In the
AKASHA blog Alisie writes about a metamorphosis and compares the change from a caterpillar
to a butterfly. The alpha and beta phases are said to have corresponded to the caterpillar phase,
the second half of 2018 to the chrysalis stage and now the butterfly is supposed to unfold with
all its beauty. However, it is left open how the new orientation will look like and how the social
network will continue. On the website you will find a software section as well as a hardware
section. However, there is no content available yet. The public launch of the social network in
version 1.0 was actually planned for the fourth quarter of 2018. With this launch, the change
from the Rinkeby test network to the Ethereum main network should also be completed. It is
currently not known when the public launch will take place.

3.3.2 Peepeth

Peepeth is a microblogging platform that is very similar to Twitter in functionality and design.
There are also other parallels to Twitter: Instead of a blue bird in the logo, Peepeth uses a pen-

8 https://beta.akasha.world/

3.3 dApps - The Next Generation Social Networks 17

' LOCK

AETH Manafied
®
CYCLE .
GENERATES
Mana

Cycling
T BURN
CYCLE
l Collected

COLLECT
FREE J/

CONVERT ESSENCE Essence

Figure 3.3: AETH flow

guin and instead of tweeting users peep. The maximum post length is limited to 280 characters.
This has no technical cause, but was taken over by Twitter. The main difference to Twitter is the
decentralization. Behind Peepeth’s development is Bevan Barton, who launched the platform in
March 2018.

From Peepeth’s point of view, social media is broken. The fault lies with the operators of social
networks, who control the online identities of users, sell their data and violate their privacy.
The news feeds are manipulated to drive the user to a higher level of interaction at any price.
In addition, the platforms are teeming with trolls, bullying and flame wars. Barton wants to
counter these grievances. Therefore there is no advertising on Peepeth.

The website Peepeth.com is the front end of a decentralized app (dApp), which uses the Ete-
herum blockchain and the Inter-Planetary File System (IPFS). This front end can theoretically
be exchanged arbitrarily and Peepeth’s data can be read and written because the blockchain
protocol is open. No Ethereum test network is used, but the main network. The execution of
transactions on the Ethereum blockchain is associated with costs. Peepeth bears the costs for its
users. The necessary capital was collected via a crowdfunding campaign. However, when ac-
counts are misused for spam, Peepeth no longer bears the cost of writing to the blockchain. The
resulting costs should make spamming unattractive and reduce it to a minimum, because tech-

18 3 Related Work

nically it is still possible. A dApp browser (e.g. Opera) or a browser that has been extended by a
wallet (e.g. using MetaMask extension) is required for use. Although Peepeth covers the costs,
the user has to sign the transactions, which is why the browser has to contain the corresponding
extension.

In order to keep transaction fees low, the actions executed on Peepeth are collected on the server
hosting the front end and written to the blockchain in batches every hour. Several actions are
bundled in one file and transaction. The actual contents end up as a JSON file in IPFS and only
the reference hash in the blockchain.

While the Smart Contracts are open source, the front end is closed source. So it is impossible to
understand what is happening on the server hosting the front end Peepeth.com. Image files are
not only stored in IPFS but also mirrored at Amazon AWS to provide a better user experience.
Basically, the client does not communicate directly with IPFS, but the server behind the front end
communicates with the two back end technologies IPFS and Ethereum Blockchain, as shown in
Figure 3.4.

fos
) A L EOWn
AUS
&
peepete. cown \/ /
va\“«*&m@\ \i
(£ (i) @ﬁ&;wm
N [Hhertm
¥lo g

Figure 3.4: Peepeth architecture

\PES

The data written to the Ethereum blockchain cannot be deleted or modified. For Barton, this is
a main advantage since everyone is forced to be aware of his actions and the self-confidence
for his own actions is sharpened. Furthermore, this fact of immutability is the main ar-
gument for freedom of expression and against censorship. However, not all messages are
presented in the Peepeth front end. If they violate Peepeth’s terms of use, they will be fil-
tered. Peepeth calls this procedure ,moderation“ and argues that this is by no means to be

3.3 dApps - The Next Generation Social Networks 19

understood as censorship, but much more ,on cultivating mindful engagement and positive
contribution®.

In addition to writing short messages, it is possible to like posts. However, posts cannot be liked
infinitely. There is only one like per day available, a so-called Enso. The resulting rarity should
express the particular appreciation of a contribution. ,,Enso (Japanese for ,circle‘) is a circle that
is hand-drawn in one uninhibited brushstroke. It represents creativity, freedom of expression,
and unity“. Furthermore, good content from other users can be rewarded with a tip. 10% of the
tip go to Peepeth and serve to finance. Also for the verification of an account and special badges
go 10% of the fees to Peepeth.

On 29th January 2019, Peepeth had 4055 users who posted a total of 66262 Peeps. For an
account at Peepeth you first have to apply and after some time you will receive a link by email
to join the platform. On invitation of an active user, new users can join directly without waiting
time. Users can verify themselves with their existing Github and Twitter accounts. In the future,
it will be possible to use further platforms for the verification of an account. In order to verify an
account, the user must post a ,,special message“, which also contains his Ethereum address. The
link to this post must then be handed over to a Smart Contract, which confirms the ownership
of the account.

Peepeth communicated the next milestones to increase the user experience as part of the crowd-
funding campaign. The first milestone has already been reached. The fact that the possession of
a cryptocurrency requirement for the use and procurement of such a currency is difficult was to
be eliminated. Peepeth bears the costs for its users. The next steps are the use without special
software requirements (renouncement of special browsers or MetaMask) and the development
of an iOS app. However, only 140.56 ETH could be collected from the required 1000 ETH. It is
unclear to what extent the desired goals will now be achieved.

3.4 Protocols

3.4.1 ActivityPub

ActivityPub is a protocol published by the World Wide Web Consortium (W3C) in January 2018
as an official standard®. The protocol regulates communication within an open, decentral-
ized social network. There are two levels: client to server (Social API) and server to server
(Federation Protocol). The two protocols are designed in such a way that they can be used
independently of each other. If one of them is implemented, it is easy to implement the other.
The Activity Streams'? data format is used to describe activities in JSON-LD format. This data
format is also an official W3C standard with the aim to record meta data of an action in a
human-friendly but machine-processable syntax.

The principle behind Activity Pub is similar to that of e-mail. Servers can be uniquely identified
via the domain. Within a server, each mailbox is accessible via a unique name. Thus, users can
communicate with each other via different servers by having their messages forwarded to their
own mailbox.

? https://www.w3.org/TR/activitypub
10" https://www.w3.org/TR/activitystreams-core

20 3 Related Work

Client to Server (Social API)

Users are called actors in ActivityPub and are represented by an associated account on the
server. Since there can be several servers, it is important to emphasize that an account is only
ever located on one server and user names must always be unique only within a server. Each
actor has an inbox and an outbox on the server on which he is registered with his account. These
are the two endpoints with which the client application communicates via HTTP requests. More
is not necessary, because the server ensures that all messages and information for the user end
up in his inbox and that the messages in his outbox are forwarded to the desired recipients (see
3.4.1). To ensure that only authorized clients store content in an outbox, the posts must be
signed.

actor reads send messages
Incoming messages to actor (federation!)

’@ll-@ﬂ
) (G)

actor sends outside world can read
messages / posts content messages from actor

REST OF THE
WORLD

Figure 3.5: Concept behind ActivityPub [17]

The outbox of an actor holds all his published posts. When accessing the outbox of an actor
without authorization, the server delivers all public posts of the actor as response. If access with
authorization occurs, the explicitly shared content is also transmitted.

The own inbox can only be queried by the corresponding actors itself. With an access to his
own inbox he receives all activities delivered to him from the server. The inbox is filled by POST
requests from other servers to the inbox.

Each actor has some so called collections. To these collections, objects can be added and
removed. The collections are used to store information related to an actor. These are the
collections each actor has:

* Followers Collection: List of actors who have posted the actor a follow-activity and follow
him. Can be used as addressee when sharing a post.

* Following Collection: List of actors followed by an actor and whose content he is inter-
ested in.

3.4 Protocols 21

* Liked Collection: List of all objects the actor has liked

The following interactions are defined between the client and the server, but some of them are
optional to implement: Create, Update, Delete, Follow, Add (add object to collection), Remove
(remove object from collection), Like, Block, Undo. To address the activities, to, bto, cc, bcc
provide the same possibilities as are known from e-mail. The server then has to ensure that the
activity also reaches the addressed actors.

Server to Server (Federation Protocol)

This protocol defines how activities are exchanged between actors of different servers. The
network between the servers with all actors is called a social graph. The interactions defined
in the Social API must be implemented by the server so that they reach the addressed actors.
The starting point is always the outbox of an actor. If a new activity is created using a POST
request and, for example, the follower collection of the actor is selected as the addressee, the
server must ensure that every actor in the follower collection receives the activity in its inbox.
The recipients and their addresses can be found by following the links in the activities. It is also
up to the server to ensure that there is no duplication of content.

Application Examples

The most popular application example is the social network Mastodon'!. Mastodon is a decen-
tralized network based on free and open source software. Everyone is invited to host their own
platform. With currently 1.6 million users it is the largest implementation of the ActivityPub
protocol. The Federation Protocol is used for communication between the individual servers.
The Social API is not used, instead Mastodon offers its own API'? for communication with the
client.

Networking with other users is not limited to mastodon instances. Each service that has imple-
mented the ActivityPub protocol allows its actors to network with actors of completely different
applications because the communication is standardized. So it is possible without problems to
follow an actor of the video platform PeerTube'® as Mastodon actor and be notified when he
uploads a new video there.

In addition to cross-platform networking, one big advantage is that it has no major impact
no matter what happens to Mastodon. The network can still exist and thanks to the open
protocols and open source software it can be developed and used without restrictions. If Face-
book were to go offline, all contacts would be lost and the platform would never be accessible
again.

3.5 Summary

11
12
13

https://joinmastodon.org/
https://docs.joinmastodon.org/api/guidelines/
https://joinpeertube.org/en/

22 3 Related Work

4 Concept of a Hybrid Online Social Network

The criticism of the protection of privacy on the Internet, especially in social networks, is not
new. As early as 2010, the founders of diaspora* discovered that there was no social net-
work that sufficiently protected the privacy of users[13]. Their idea of a decentralized network
that protected user data by design convinced so many people that even before the start of
the development people donated $200,000 instead of the required $10,000 to a kickstarter
campaign.

The reason for the poor protection of personal data lies in the centralized system structure used
by all leading social platforms. With this structure, the data is stored centrally and largely
unencrypted. The service provider therefore inevitably has access to this data. Which data
is collected during use and what happens to the data is not transparent to the user. On the
one hand, the user data is evaluated in order to improve the user experience (suggestions for
content matching the user’s preferences using recommender systems), but on the other hand
also in order to make a profit. Revenues can be generated through personalized advertising or,
in the worst case, through the sale of data. Furthermore, the protection of data against access
by third parties via official interfaces (harvesting) or unauthorized hacking cannot be ruled out.
And last but not least, due to applicable law, it may be necessary for data to be transferred to
secret services or government agency.

Although the problems and dangers have been known for a long time and new scandals reg-
ularly become known to the public, the users remain largely loyal to the respective social net-
works. Alternative social networks, which focus on privacy protection, lack attractiveness, so
that they gain only a few users and often fail after a short time. Obviously, the connection
to the respective social network is so strong that the barrier to switching to another, more se-
cure social network is not overcome. The amount of content already created, the network
built, and the large number of contacts using the same platform all create this so-called lock-in
effect.

If switching to another platform is not an alternative, it is necessary to look for ways to better
protect users and their data on existing platforms. The Researcher Training Group (RTG) ,,Pri-
vacy and Trust for Mobile Users“! in research area B ,Privacy and Trust in Social Networks® is
dealing with problems like this. Subarea B.2 deals specifically with the protection of privacy in
hybrid social networks.

In the following, a concept for a hybrid social network will be developed that tries to take into
account the interests of the different stakeholders. In addition, functionality requirements and
potential limitations are listed. Finally, a solution strategy is shown and a possible architecture
is presented. The concept should be applicable to all social networks. A specific implementation
will be presented in the next chapter for Twitter.

! https://www.informatik.tu-darmstadt.de/privacy-trust/privacy and_trust/index.en.jsp

23

4.1 Requirements to the Hybrid OSN

In order for users of an OSN to be willing to use another client for or an additional extension
when using the OSN, the solution should meet certain functional and non-functional require-
ments.

Functional requirements:
* The standard functionality of the OSN can be used without restrictions.

* The user can clearly see which way (private or OSN) the data goes and where it comes
from.

* Data access should only be possible for authorized users.

The data exchange should be automatically encrypted, so that the data is worthless for
third parties.

The data format is flexible in order to map changes and new OSN functionalities.

Platform independence

The solution is client-side, since the OSN Server cannot be influenced

The OSN Service Provider can retrieve anonymized data relevant to him.
Non-functional requirements:

* Data exchange over the private network is fast and secure.

Simple, understandable user interface

Attractive, modern design

No violation of the guidelines and terms of use of the OSN

* No restrictions for classic users who do not use the hybrid solution

The additional effort for the user when using the hybrid solution should be minimal.

4.2 Stakeholders

Even if the stakeholders are not necessarily directly involved, it is still important to under-
stand the views and interests of the various parties and take them into account in the de-
sign. Table 4.1 shows the interests and points of view of the parties involved directly and
indirectly.

24 4 Concept of a Hybrid Online Social Network

"SI9P|OYae]S [BIDASS JO UOIIN|OS PLIGAY SY3 UO 9dUSN|4Ul PUB UOIIN|OS PLGAY B SpJemo} apnile ‘s3satalul i1y djgel

2JUaNJurl I9aylo ON e

Qouanpjur 1ea1d
- Uonoe B39 9Sed ISIOM 93 UJ e

gouanpjur 1eaid - 1xoddns

3unuaaaid pue aane
-3ou ‘Osed 1SI10M O UJ e

aanzoddns
pue oaanisod 9s9q 1V e

UOne[SI39] pue

digysiosua) e

uoIsiAIadng

[epueuy pue uonowoid 1S9q 1Y e Arod uo Zuipuadsq e SMe] Jum Duerduio) e SJIUSUIUIDAOD)
JjuawdoraAsp
pUB SINIONIISBIJUL IO0J SISOD ON e
Audraranos 3unjewr uonnjos a3ueyd
-UOISIO9P 9UIS ‘QOUSN[JUI 1BIID) e 9AIISOd o -X9 BIBP 1SBJ QINJ3S ‘O[B[edS e NSO PHAAY
o i . o 1adofaasqg
e1ep Im suaddey Jeym IaA0
OUDN[JUI MO Ayu3raIanos 3UD{eUW-UOISIID(
‘ 1951 NSO
JuswaAoIduwI 10J YOeqpadq e POIISOP SB OAIISOd e NSO 9Y3 JO 2SN PIIJLIISAIU[) o By
SToSTT NSO .
PLIGAY 01 9np S93BIUBAPESIP ON e
OUSNJJUI ON o [eIINSN NSO 93 JO SN PIIDLIISAIU[) o HMM
OUSAPUT TeSTD)
NSO PHq4Y Y3 3uppog »
UONBZIWIXRW 1JOId
UOISN[IX II9Y] SI9SN NSO
PLIGAY 931 JO uOonedynuapl Ag e wirojierd oyl 01 s1asn 3urpulg e
uonnos prigAy a3 jo juswdo JIqe dIqrs 1oDIAGL
-[9ASP 93 UO 9DUINJJUI 1IIIP ON e -I1SOpun Se ‘OANB39N e -s0d se ejep JI9sn YINUW Se 1I3[[0D) ww.:cwm
NSO PLIGAY uo 3suanpu] | NSO PHGAY spiemo) apmimy S1S9J9JU] | J9pP[OYEe91S

25

4.2 Stakeholders

4.3 Restrictions

When designing the hybrid OSN, there are a few limitations that need to be considered, for
which appropriate solutions can be found. These restrictions include:

* Interfaces of the OSN: Ideally the OSN offers a public API with the full functionality.
Since the user’s data should be protected as best as possible, access via the API is normally
restricted. This may be due to a limited number of requests per time interval or a limited
range of offered functions.

* Crawling the OSN web pages: If there is no official API or if it is strongly restricted,
the contents can theoretically also be extracted by crawling. However, this brings with
it several challenges. Modern web pages load many contents asynchronously, so that the
initial HTML does not yet contain these contents. Furthermore, there are sophisticated
mechanisms that notice crawling and lock out crawlers. Likewise, it may be difficult to
add data to the OSN. For security reasons, in most cases, special tokens are sent along with
each request to detect and prevent abuse and fake requests.

* Development, operation and licensing costs: Costs for the development, operation and
licensing of third-party software may incurred. At best, the costs can be avoided by con-
scious decisions.

* Operating system or runtime environment: Nowadays OSNs can be used on almost
all devices; independent of their operating system. In order to achieve the same user
experience, the hybrid OSN should be usable on the same platforms. Any restrictions
imposed by the operating system (user and application rights, connectivity, etc.) must be
taken into account during development.

* Resources: The devices running the hybrid OSN may have limited resources (storage
space, processing power, Internet connection/data volume, battery). When making design
decisions, it is important to plan as resource-conserving as possible and to find scalable
solutions. Overall, the overhead for the hybrid extension should be as low as possible
compared to the original application.

* Availability of data: The data that is exchanged securely and not via the OSN’s servers
must always be available. Whether a user is offline or how old the data is must not affect
its availability.

While the restrictions on the hybrid client itself can be actively influenced and resolved, the
restrictions on the OSN cannot be controlled. If the OSN does not provide any interfaces and
the hurdle of data exchange with the servers is insurmountable, this can completely prevent the
development of a hybrid client.

4.4 Quality Goals

The following quality objectives (Table 4.2) have been defined to ensure that the quality of
implementation is as high as possible. By adhering to the quality targets, errors and problems

26 4 Concept of a Hybrid Online Social Network

are to be avoided, the application is to remain maintainable and new developers are to be
enabled to get started quickly.

Quality Goal | Motivation

- Module, class and method names in English

Analyzability | - Detailed documentation of the public interfaces

- Compliance with the Clean Code principles

- Common programming language

- Program modules against interfaces to keep them interchangeable
Testability - The architecture should allow easy testing of all building blocks
Transparency | - The application should be Open Source

Changeability

Table 4.2: The quality goals are the relevant requirements and the driving forces that software
architects and developers should consider.

4.5 Solution Strategy - Architecture

Various models can be used to implement secure data exchange between the users of an OSN
via an add-on. The solution strategies shown below differ essentially in the question of where
data is stored and how it can be found.

_—29

R —

R R/

\

HAas M

Figure 4.1: Different architectures: a) Use of a central server to which all hybrid OSN users con-
nect to, b) Creation of a P2P network among the users for data exchange.

One possibility is to use an extra infrastructure to store the data, as shown in Figure 4.1.a.
Additional servers are used to store and distribute the private data to be protected. This has
the advantage that the data is always available and there are no dependencies to other hybrid

4.5 Solution Strategy - Architecture 27

OSN users. Furthermore, resources must only be available centrally and not locally for every
user. At the central location the data can be indexed and specifically queried. However, it is
problematic that one or more such servers must be operated and maintained. In principle, the
question of the operators must be clarified, because the infrastructure must function reliably. An
architecture based on this proposal was used by FaceCloak.

In contrast, a decentralized or distributed solution strategy would create a network among users
of the hybrid application. This strategy is depicted in Figure 4.1.b. No extra infrastructure would
have to be operated. The users would then have a classic peer role. With this model, solutions
must be found for how data is always available and can be found, even if a user is temporarily
or permanently offline. Furthermore, the resources on the end devices are limited, so that
effective, economical solutions are needed. Another challenge is the addressing of peers. Since
they typically do not have a static IP address, but the IP address changes frequently, solutions
must be found for accessibility. Since there is no central, global index, finding data is even more
difficult.

An interim solution is also conceivable, in which an existing infrastructure, e.g. an already
existing P2P network or the block chain, is used for storing and exchanging data. Since no
influence can be exerted on an existing infrastructure, its use entails further restrictions and
potential risks.

The advantages and disadvantages of the different strategies are listed in Table 4.3 be-
low.

4.6 Solution Strategy - Client

With regard to the implementation of the hybrid approach, two possibilities are conceivable. On
the one hand, the extension of the original OSN client (app or web front end) as an addon. On
the other hand, the development of a completely new client.

When the OSN is extended by an addon, the conventional functionality of the OSN does not
have to be taken care of. Therefore, the development can be completely focused on the addon.
At crucial points, the addon ensures that the interface is extended by additional elements that
enable secure data exchange. The service providers usually do not offer developers an interface
to extend the OSN with such own functionalities. With web front ends it is possible to manipu-
late the website content using browser add-ons. One example for doing so is FaceCloak. Since
such browser extensions manipulate the Document Object Model (DOM), knowledge about the
document structure is necessary for the successful function in order to make changes in the right
places. The short release cycles of OSNs and the associated frequent changes to this DOM struc-
ture make it difficult to keep up with the changes. When consuming the OSN via the official
apps on mobile devices, an extension or manipulation is not possible.

The alternative to the extension approach described above is an extra hybrid client app. The
entire functional range of the OSN must be implemented and kept up to date. As already
mentioned with the restrictions, the functions are usually not provided completely via an API
and the crawling of the content also brings with it some challenges. By having complete control
over the development, the additional protected, secure communication can be added at the

28 4 Concept of a Hybrid Online Social Network

Advantages Disadvantages
Own infrastructure I
(centralized) Availability of data Expenses
* Finding the data * Who operates the in-
frastructure?
* Resources only have to
be available centrally * Compliance with legal
requirements
* No dependencies d
among hybrid OSN
users
Own network . e
(decentralized, distributed) Besour(.:es scale with Availability of data
increasing number of « Findine the d
USers inding the data
* Addressing the peers
* Local resources limited
External infrastructure * Ideally no costs * No influence on future
development
* Resources are provided P
by the external infras- * Dependence on infras-
tructure tructure entails risks

Table 4.3: Advantages and disadvantages of the different solution strategies for the hybrid OSN
architecture.

appropriate points. In the best-case scenario, at least one hybrid app is available for every
operating system for which an official OSN app exists.

Both approaches can be combined by displaying the (mobile) web page of the OSN in a WebView
in a separate app and executing DOM manipulations via injected JavaScript code. For example,
there are some alternative clients for Facebook (e.g. ,Friendly for Facebook“? 3, Metal Pro“})
that use this approach.

4.7 Summary

https://play.google.com/store/apps/details?id=io.friendly
3 https://itunes.apple.com/de/app/friendly-for-facebook/id400169658
https://play.google.com/store/apps/details?id=com.nam.fbwrapper.pro

4.7 Summary 29

5 Proof of Concept

After working out the concept of a hybrid OSN in the previous chapter 4, this chapter presents
a proof of concept in the form of a special Twitter client for Android. The previously described
solution strategies as well as functional and non-functional requirements actively influenced the
development of the client, and attention was also paid to compliance with the defined quality
goals. In the following, the decisions made are explained and the resulting architecture is
presented.

5.1 Objective

With the proof of concept, the basic feasibility of the idea of an extension of an established OSN
by a secure data exchange should be proven. Within the framework of this thesis, the task was
to provide the proof of concept as a native Android app. With regard to the architecture, the
focus from the beginning was on a peer 2 peer solution, which is why a solution with its own
additional servers was not pursued further in the development of the prototype. Furthermore,
an interface should be available for the service provider of the OSN, through which anonymized
information can be obtained from the privately exchanged data.

Even though the implementation by add-on, as shown in the previous chapter as a possible
solution strategy, was thus fundamentally ruled out, the decisions were nevertheless based
on considerations as to how users of such an extension could also be part of the P2P net-
work.

Since it is only a proof of concept, the mapping of the complete functionality of the OSN was
not in the foreground. But, again, this was taken into account by considerations and deci-
sions, how for example data formats can be arranged so flexibly that every functionality can be
mapped.

In addition, the focus was on compliance with the quality objectives and implementation of the
functional and non-functional requirements as defined in the previous chapter. How well this
has been achieved will be evaluated in the following chapters for evaluation and subsequent
discussion.

5.2 Selection of the OSN

When selecting a suitable OSN for the development of a hybrid client, Facebook was the obvi-
ous choice due to the numerous negative headlines about data protection. With over 2 billion
users per month, it is currently the most widely used social network in the world. In the recent
past, it has often been criticized for its handling of its users’ data. In particular, the scandal
surrounding the data analysis company Cambridge Analytica, which had access to the data
of up to 87 million users, hit Facebook hard. As a result, CEO Mark Zuckerberg had to face

31

the US Congress and the EU Parliament in question rounds and did not leave a good impres-
sion by avoiding many questions. As a result of this scandal, the Facebook API was further
restricted.

However, the Facebook API is not suitable for developing an own client anyway. The functional-
ities offered by the API offer the possibility to develop an app that can be used within Facebook,
for example for a game. So, it is not possible to make a like for a post through this API, which
is part of the core functionality of a Facebook client. As discussed in Chapter 4, it is possible to
access the data through crawling. However, the constant and rapid development would make
this an arduous undertaking. Facebook writes in a blog entry[11] that the code changes every
few hours. Therefore it is almost impossible to adjust the crawler fast enough and roll out the
adjusted code.

Even the mixed version of displaying and manipulating the mobile website in a WebView in
a container app does not seem to be an option due to the short release cycles and frequent
changes. Apps like "Friendly for Facebook" don’t manage to keep up with the changes as reported
in various user ratings on the Google Play Store. The erroneous representations and bugs worsen
the user experience and result in frustration of users.

For this number of reasons, Facebook dropped out as OSN candidate for the prototype despite
the special interest. As a further candidate, the OSN Google Plus was dropped, as Google
announced in October 2018 that it would discontinue its OSN[15].

In the end, Twitter was chosen for the prototype. With 336 million active users per month, it is
one of the largest social networks. It is particularly well suited for the development of a hybrid
client for two reasons: on the one hand, it has a detailed API that provides almost full function-
ality free of charge, and on the other hand, compared to Facebook, it offers only a few simple
functions. These are the ideal prerequisites for a first proof of concept.

Twitter offers different APIs for developers that serve different purposes. The current APIs
are:

» Standard API: the free and public API offering basic query functionality and foundational
access to Twitter data.

* Premium API: introduced in November 2017 to close the gap between Standard and En-
trprise API. Improvements over the standard API: ,more Tweets per request, higher rate
limits, a counts endpoint that returns time-series counts of Tweets, more complex queries
and metadata enrichments, such as expanded URLs and improved profile geo informa-
tion“!. Prices to use this API start at 149$/month.

* Enterprise API: tailored packages with annual contracts for those who depend on Twitter
data.

* Ads API: this API is only of interest for creating and managing ad campaigns.

¢ Twitter for websites: this is more a suite of tools than an API. It’s free to use and enables
people to embed tweets and tweet buttons on their website.

L https://blog.twitter.com/developer/en_us/topics/tools/2017/introducing-twitter-premium-apis.html

32 5 Proof of Concept

In the case of the hybrid client, the standard API is the right one. In order to use this API you first
have to create a ,,Twitter App“. After registering you will get a consumer key and access token.
These two authentication tokens are required to log in users via their own app and successfully
execute requests to the API.

Twitter offers almost the entire range of functions via the API. The lack of functionalities (such as
querying Reply to a Tweet or the search results come only from the last days) are not so difficult.
A major limitation is the limitation on the number of requests. This is to prevent Twitter being
exposed to too much load. It also aims to prevent bots from abusing Twitter. The exact limits
can be found on a help page?. In the app stores of Google and Apple, there are a number of
alternative Twitter clients (Twitterific®, Talon for Twitter?, Fenix 2 for Twitter®), which are also
subject to these restrictions in terms of functionality and limitation.

Basically, the API can be used via HTTP requests. The data exchanged are available in JSON
format. However, there are also various libraries (e.g. Twit®), some of which are developed
directly by Twitter (see Twitter Kit for Android” or iOS®) and greatly simplify the use of the
APIL.

5.3 Technology Decisions

In order to implement the concept in the best possible way, some technology decisions had
to be made. These included the implementation of the data exchange on a peer-to-peer
basis and the choice of a framework for the development of the app. In the following,
different technologies and libraries are presented that were considered for the implementa-
tion.

5.3.1 Peer 2 Peer Network

Basically, there are two conceivable approaches for the P2P network:

* Creation of a separate P2P network between the hybrid clients

* Use of an existing P2P network for own purpose

In the following, solutions for both ways are presented and compared with each other.

https://developer.twitter.com/en/docs/basics/rate-limits
https://itunes.apple.com/de/app/twitterrific-5-for-twitter/id580311103?mt=8
https://play.google.com/store/apps/details?id =com.klinker.android.twitter 1
https://play.google.com/store/apps/details?id=it.mvilla.android.fenix2
https://github.com/ttezel/twit

https://github.com/twitter/twitter-kit-android
https://github.com/twitter/twitter-kit-ios

0w N oUW N

5.3 Technology Decisions 33

Creation of a P2P Network

The advantage of having an extra P2P network is that it is completely under control. Accord-
ingly, it can be designed to fit exactly to the use case and require little or no compromise.
However, setting up a P2P network is a big challenge and some hurdles must be overcome.
These challenges include peer discovery (how peers find each other), global data exchange over
the Internet and data storage, and availability of the stored data. And of course, all these re-
quirements must scale. It should work for P2P networks with only a few peers and also for a few
thousand or even more peers. Two approaches are conceivable here: the use of an established
standard such as Wi-Fi Dircet or WebRTC or the use of a library (for example Hive2Hive, Y-Js)
to create a dedicated P2P network.

Wi-Fi Direct

Wi-Fi Direct is a standard (IEEE 802.11) for data transmission between two WLAN terminals.
There is no need for an access point between the two devices. However, the distance that may lie
between the two peers is thus limited. Without obstacles, which contribute to the attenuation of
the signal, a distance of up to 95m is possible. In buildings, it sinks to 32m or less. However, the
requirement for the P2P network to expand Twitter is different. Users can be scattered around
the world and may be online through the mobile network. There is no P2P connection via Wi-Fi
Dircet in this case.

WebRTC

WebRTC (Web Real-Time Communication) is an open standard that provides various communi-
cation protocols for real-time communication between two or more peers. Above all, WebRTC
is popular for its ability to easily perform video calls, as known from Skype, in the browser
without a server. But also the file transfer between peers is possible. In a separate P2P network,
data could be exchanged between the clients. However, the connection between the clients is
complex, since in addition to the two peers also a STUN server and optionally a TURN server
is involved. Furthermore, it is unclear whether the system scales. At least for Google Chrome
browser is known that a maximum of 265 connections to other peers can be maintained in
parallel.

Y-JS

The JavaScript library Y-JS describes itself as ,,a framework for offline-first P2P shared editing on
structured data-like text, richtext, json, or XML.“ The library takes care of solving synchroniza-
tion conflicts when editing distributed files. By choosing a connector, you can set the protocol
for the communication between the peers.There is the possibility to use WebRTC, XMPP or Web-
sockets, but with some connectors running a server is a prerequisite. Further extensions can
be used to supplement a database and data types, but the focus here is on the joint editing of

34 5 Proof of Concept

data by multiple peers. For all connectors, the authors of the library recommend using an own
server.

Hive2Hive

Hive2Hive is a Java library for ,secure, distributed, P2P-based file synchronization and sharing®.
There is no less promise than ,a free and open-sourced, distributed and scalable solution that
focuses on maximum security and privacy of both users and data“. In order to be able to use
Hive2Hive globally via the Internet, it is necessary to operate at least one relay peer - five are
recommended®. Since a permanent TCP connection between peer and relay peer is maintained,
the power consumption is quite high. Constant TCP connection can be avoided by using Google
Cloud Messaging (GCM). However, Google has already discontinued this service. And since the
development of Hive2Hive was discontinued in March 2015 too, there is currently no solution
to this problem.

GUN

GUN is a graph database that keeps a state in sync across multiple instances. GUN is
written in JavaScript and unlike Hive2Hive and Y-JS, the project is still being worked
on.

todo...

5.3.2 Using an Existing P2P Network

As mentioned in the previous section, setting up your own P2P network involves a num-
ber of challenges. If you use an already existing P2P network for your own purpose, these
challenges can be elegantly avoided. For this purpose, however, a suitable P2P network
must be found whose properties and possible uses meet the requirements of the hybrid OSN
client.

In the following, various P2P networks are considered and examined for their usability for a
potential deployment to extend an OSN.

Filesharing P2P Networks

Blockchain

IPFS

° https://github.com/Hive2Hive/Android/wiki/Guide-for-System-Admins

5.3 Technology Decisions 35

Conclusion

5.3.3 Application Framework

[Standard Android Java App vs. Ionic]

5.4 Building Block View

In this section, the context in which Hybrid OSN is located is first considered and then a
breakdown into the individual components is carried out. The function of the respective
blocks is then described in more detail. Finally, the function of certain components in inter-
action is explained using the examples of displaying the home timeline and posting a new
tweet.

5.4.1 Scope and Context

Figure 5.1 shows a black box view of which other systems Hybrid OSN communicates with via
interfaces. The systems are:

Twitter API

e Gun

IPFS via Infura

e User

Infura'® is a service that provides access to Ethereum and IPFS via a simple interface. Communi-
cation with the API happens using simple HTTP requests. The connection of IPFS in hybrid OSN
can thus be carried out in an uncomplicated way. The use of an additional system entails typi-
cally an additional risk. However, there is a JavaScript client for IPFS, which can be integrated
into hybrid OSN and thus the dependency on Infura would be omitted. At the present time and
for the development of the prototype, the decision was made to use Infura for reasons of simplic-
ity. Infura can be used for IPFS free of charge and without registration.

5.4.2 \White Box View

The used Ionic Framework uses Angular in the core, in the concrete case of hybrid OSN An-
gular 5.2 is used. Accordingly, the hybrid OSN App is in principle an Angular application.
The essential building blocks are components, pages and providers. In the following, these
components are described in detail and examples are given of where they are used in hybrid
OSN.

19" https://infura.io/

36 5 Proof of Concept

and Conferct

A

Lol

v’

e

GUVK

| PES

s OSA
Lg QH
N
W] =
™
Prowiden D/

U

|

/

T

N

C—ow\f&v\enb

/

Figure 5.1: .

(o

Iufums e—

(PFS

Providers

Data access is performed using providers (known as services in Angular). For the external
services (Twitter API, P2P database, P2P storage), there is one provider each to handle the
communication. In addition, providers are used as helper classes that provide a certain func-
tionality that is used several times. This includes, for example, encryption and decryption
and the compilation of aggregated timelines. Providers are injected into components using
the constructor. Table 5.1 lists all providers used in hybrid OSN and their functional descrip-

tions.

5.4 Building Block View

Provider Purpose

Auth Manage and perform authentication against the Twitter API. Responsible
for login and logout.

Crypto Provides methods for encryption, decryption, and key generation

Feed Aggregation of private (P2P) and public (Twitter) tweets to compose a

chronological timeline

P2P-Database-Gun | Interface for data exchange with Gun
P2P-Storage-IPFS | Interface for data exchange with IPFES via Infura
Twitter-API Interface to use the Twitter API using the Twit package

Table 5.1: Providers used in the hybrid OSN app in alphabetical order with their purpose.

Components

Components are the basic building blocks of a user interface. Figure 5.2 shows an example for
the representation of a tweet in hybrid OSN using various components. A component consists
of an HTML template, CSS styling and JavaScript logic, whereby the logic is typically limited to
a minimum. Components can be used as elements in other components or pages. A component
is given the data it is supposed to visualize. Furthermore, components can process events or
return them to parent components for handling.

@ lonic @ v tweet-header

The lonic 4 Roadmap is here. &

¢ Improved desktop support
¢ Framework integrations tweet-body
¢ Custom animations & more

tweet

bit.ly/2tDeV8q

“~ 1997 O 213 tweet-actions

Figure 5.2: Composition of the tweet component from three other components. Several tweet
components are in turn combined to form a feed component.

Pages

Pages are special components that are used as a holistic view. A page is made up of several
other components. The data to be displayed is loaded using providers. To be able to navigate
between the individual pages within the app, the model of a stack is used (implemented by
the NavController). The currently visible page is at the top of the stack. When another page

38 5 Proof of Concept

is called, it is pushed onto the stack. Pressing ,Back“ removes the top page from the stack and
displays the page below it.

Table 5.2 lists all pages and their purpose. When the app is opened, it checks whether the
user is already logged in. Depending on this, the user starts with the Login Page or the Home
Page.

Page Purpose

About Information about the app, which can be accessed via the
login page to get basic information about the app before
logging in

Home Chronological view of the latest tweets from Twitter and the
private network

Login Authentication against Twitter to use the Twitter API

Profile Presentation of a user profile consisting of the user data

(profile picture, brief description, location, website) and the
user timeline

Search Container page for searching for tweets and users, where
tweets are also divided into popular and recent (see Search-
Results-Tweets-Tab)

Search-Results-Tweets-Popular | Search results of currently popular tweets for a given key-

word

Search-Results-Tweets-Recent | Search results of recent tweets for a given keyword

Search-Results-Tweets-Tab Container page for the search results for tweets (recent and
popular) in tabs

Search-Results-Users Search results of users for a given keyword

Settings Configuration of keywords that trigger the private mode and
settings regarding encryption

Write-Tweet Form for writing a tweet

Table 5.2: Pages used in the hybrid OSN app in alphabetical order with their purpose.

Local Storage

As the name suggests, this is a local storage that the app has access to. With hybrid OSN,
this memory is used to store the essential information for usage. These include the Twitter
user id, the two tokens for accessing the Twitter API, the keywords that trigger the private
mode, and private and public keys for encryption. Logout completely deletes the local stor-
age.

5.5 Runtime View

This section describes concrete processes and relationships between building blocks for two
selected scenarios. The first is to write and post a tweet and the second is to display the

5.5 Runtime View 39

home timeline. In addition to the description, the two scenarios are also documented by
flowcharts.

The goal is to make clear how the building blocks of the system perform their respective tasks
and communicate with each other at runtime. The two scenarios were therefore deliberately
selected because they are of particular importance and require special documentation due to
their complexity.

5.5.1 Post a Tweet

On the write-tweet page, new tweets can be written and posted using a form. In addition to
the input field for the message text, there is also a status display that informs the user about
the character limit, a switch that decides about the target network, and a button to send. The
process of writing and publishing a tweet is shown in the flow chart in Figure 5.3. Figure 5.4
shows the involved components in the block view.

Choose
privacy level
Is Tweet public?

Encrypt private
Build private .| Tweet-JSON .| Publish Tweet on Store IPFS hash

Tweet as JSON 1 with private Key IPFS via Infura on GUN

(RSA)

Store hashtags on
> GUN without
reference to user

Is public key
published?

\

Yes No
1

Display
information
to user

Post on Twitter
using their API

Figure 5.3: Flow chart of the process for posting a new tweet either on the public Twitter net-
work or on the private P2P network

After entering the message in the input field, determining the destination network, and pressing
the ,TWEET!“ button, processing starts in the WriteTweetPage class. If the message is des-
tined for Twitter, the Twitter API provider sends a HTTP POST request with the data to the

40 5 Proof of Concept

AW N

P Se
Togte |, || T # G 10 | b oo 1PFS
AP Prosider | C
[
_ 2P 7B
e | et 7 O

F’::E Local
i [:—/ Q,pﬁ)&hml’h _gépfrléf_
%%

Figure 5.4: Building block view of the interaction between the different modules when posting
a new tweet

statuses/update!! interface. In this case, nothing more needs to be done, as the Twitter
API takes over the preparation of the data and extracts, for example, hashtags, mentions and
URLs.

When publishing in the private network, the system first checks whether the public key has
already been published. The Crypto provider performs this check using the Twitter API provider
(for further information about the handling of public keys see the section about security 5.6). If
the public key has not yet been published, the user receives a warning and the posting process
is aborted. Otherwise the private tweet will be constructed. The entered text is converted into
a simplified tweet object (see Twitter documentation for original tweet object'2) that contains
the essential information.

Beside the message (full_text) the Twitter user id (user_id) and the timestamp (created_at)
are set. In addition, there is a flag (private_tweet: true) to distinguish the private tweet,
which later influences the design. The display_text_range indicates the beginning and end of
the relevant part in full_text. For private tweets this is always the entire text, for tweets from
the Twitter API an additional URL may be appended, which is not necessary due to clipping.
Furthermore, the tweet entities are extracted. This includes URLs, hashtags and user mentions.
An example of a private tweet is shown in Listing 5.1.

Listing 5.1: Private Tweet in JSON format

{
"full text": "Hello_@twitter_#hi",

"user_id": "3237049834",
"created at": 1552290414930,

11
12

https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/post-statuses-update
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object.html

5.5 Runtime View 4

O N o »

10
11
12
13
14
15
16
17
18
19
20
21
22
23

"private tweet": true,
"display_text range": [0, 18],
"entities": {
"hashtags": [
{
"hashtag": "hi",
"indices": [15, 18]
}
1,
"urls": [],
"user _mentions": [
{
"indices": [6, 14],
"id_str": "783214",
"screen_name": "twitter"
¥
]
b
}

The encryption of the private tweet data is performed by the crypto provider. The RSA algo-
rithm is used for asymmetrical encryption. The encrypted data is transmitted via the P2P storage
provider via POST request to Infura for storage in IPFS. The response contains the hash under
which the data can be found in IPES. This hash is stored in Gun together with the time stamp
and the author’s Twitter user id. This is done through the P2P DB provider. In addition, the pre-
viously extracted hash tags with the time stamp are also stored in Gun with the same provider,
so that the data in the dashboard is accessible to the service provider without having to draw
conclusions about individual users.

5.5.2 Load the Home Timeline

When opening the home page, the logged in user gets the latest tweets of the accounts he follows
chronologically presented. The tweets are loaded in batches of 20 tweets from the Twitter API
and enriched with the private tweets for this time period. If the user scrolls to the end of the
feed, the reloading of the next batch is triggered and automatically inserted at the end. A pull to
refresh can be triggered at the top of the feed. The process is shown in Figure 5.5 as a flow chart
and in Figure 5.6 as a building block view of the interacting components.

Starting point is the home page, which is accessed by the user. Using several com-
ponents, the data obtained from the feed provider is displayed. Using the Twitter API
provider, the feed provider loads the latest 20 timeline tweets via the corresponding interface
(statuses/home_timeline!®) via a HTTP GET request.

The next step is to load the private tweets that match the time period marked by the current
timestamp and timestamp of the 20th (the oldest) tweet. Furthermore, the user ids of the users
the user follows (so called friends) are required. These must initially be requested from the

13 https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-home_timeline.html

42 5 Proof of Concept

Fetch (public)
Tweets from
Twitter API

4 Fetch list of
ist of accounts
the user follows NO—p| accounts the user
cached? follows from
: Twitter API
Yes
v
For each user,
lookup entries in
GUN for the -
timeline time span
Fetch encrypted Get IPFS hash of Decrypt public key Decrypt private
here are (private) Tweetd $4a the publishers Fetch public key history using Tweet JSON with Merge with private
. Yes—p-| Tweet-JSON from . > > »
or the current time span?, IPFS via Infura pulic key history history HybridOSN key corresponding and public Tweets
from his profile (AES) public key

Render

timeline and
display it
to the user

Figure 5.5: Flow chart of the process for loading the home timeline for a user

Tesiller Toalr 401 | Crp®

& = =) u—l‘*""
£ Progder Pro

Se
A L e o) 1PFS

\Zr_?

| 7

Teed
rPR:. w C’&"’

TLP DB
Fre u{o(f-’»v GUV\

L

N
3

~J

(lome Fed }

rﬁ AS] Local
i &__,_..—-——? Hﬁ\-"\ﬁ- %_V? Ql’?‘“"‘"h _Q,éprﬁléﬁ‘_
U

the home timeline of a user

Figure 5.6: Building block view of the interaction between the different modules when loading

Twitter API (friends/1ist!%) via the Twitter Feed provider using a HTTP GET request. The

14 https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-friends-
list

5.5 Runtime View

43

loaded user ids are cached in order to keep the number of requests to the Twitter API to a
minimum for later loading processes. For each user id a lookup for private tweets in the given
time span is performed. This is done by the P2P DB provider who queries Gun. If there are
private tweets, the hashs for IPFS are returned together with the created_at timestamp. If
no private tweets are available for the period, the feed provider returns the data of the public
tweets to the home page.

Otherwise, the private tweets must be loaded and decrypted. First, the P2P Storage provider
is used to load the data behind the hash addresses from IPFS via Infura. For this purpose, the
hash is transferred to Infura with a HTTP GET request and the data is received from IPFS as
response. To decrypt the data, the author’s public key is required. The public key is stored in
the user’s public key history. This is loaded and decrypted via the Crypto provider, which in turn
uses the Twitter API provider. The private tweet is then decrypted with the appropriate public
key.

Finally, the private and public tweets are merged and sorted according to their created_at
timestamp in descending order. This data is returned to the home page. If the user triggers a
reload by reaching the end of the feed or by pull to refresh, the previously described process
starts again.

5.6 Security

Usually, asymmetric or a combination of asymmetric and symmetric encryption methods are
used for secure message exchange. The advantage of asymmetric encryption methods is that
messages can be encrypted with the known public key and can then only be decrypted by the
owner of the private key. The private key cannot be determined from the public key within a
reasonable time. However, asymmetric encryption methods are more computationally intensive
and therefore more time-consuming than symmetric encryption methods. For this reason, a
combination of both methods can be used to first exchange a symmetric key using asymmetric
encryption. This ensures that only the two parties are aware of the symmetric key, which can
then be used for symmetric encryption of the communication.

Tweets are usually posted publicly on Twitter. Only those who explicitly set their profile to
"private" can decide who they allow as followers and thus recipients of their tweets. This type
of publication and visibility should also apply to private networks. Since it is unclear who is the
recipient of a private tweet, it is not possible to encrypt the message with the recipient’s public
keys.

The following three requirements apply to encryption:

1. The author can be verified. It is not possible to distribute tweets on behalf of another user
on the P2P network.

2. A private tweet should have the same visibility to other users as a standard tweet on
Twitter.

3. The service provider (Twitter) must not be able to decrypt private tweets or associate them
with a user.

44 5 Proof of Concept

O 0 N T~ Ww N e

I R S
S VvV O N O 1~ W N~ O

Concrete actions can be concluded to meet these requirements:
1. Private tweets must be signed or asymmetrically encrypted so that the author can be clearly
identified.

2. The public key with which the tweets can be decrypted must be distributed over the user’s
profile. This is the only way to ensure that only authorized users can access the key and
that the public key belongs to a specific user without any doubt.

3. The hybrid OSN application must encrypt the public keys so that Twitter cannot read them
and therefore cannot decrypt the private tweets.

5.6.1 Realization

In the settings, an (asymmetric) key pair can be stored or generated, which is used to encrypt
the private tweets. The RSA-OAEP algorithm is used here. Furthermore, the public key can
be published on the settings page by clicking on a particular button. The new key together
with the current timestamp is recorded in the public key history of the user and stored in IPFS.
Listing 5.2 shows an example for the public key history. In JSON format, public key and validity
start are stored in an array. The address at which the public key history can be retrieved is
posted as a normal tweet in the user’s timeline during publication. So that this tweet can
be found quickly and easily, the id of this tweet is entered in the profile description of the
user.

Listing 5.2: Public key history in JSON format. The file is symmetrically encrypted before storing

on IPFS.
{
"keys":[

{
"key" : "MIGfMAOGCSqGSIb3DQEBAQUAA4GNADCBIQKBgQCNZiscdaUuJ8pUFkPkTAh6oq ... ",
"validFrom":1548591435051

¥,

{
"key" : "MIGIMAOGCSqGSIb3DQEBAQUAA4GNADCBiIQKBgQC+14hMkrRfSWCTfbmkS+méMQ. . . ",
"validFrom":1548193838409

¥,

{
"key" : "MIGEMAOGCSqGSIb3DQEBAQUAA4GNADCBIQKBgQC5rYHZ1jdPX0zCNCX86NSCTY . .. ",
"validFrom":1546382473017

},

{
"key" : "MIGIMAOGCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCjssLPkIHgNX/KyPACLOQAmB . . . ",
"validFrom":1545945585132

}

]
}

This ensures that only users who can read the user’s normal tweets have access to the user’s
public keys. The history allows you to change the key pair and still ensure that older private
tweets can be decrypted.

5.6 Security 45

Since Twitter has access to all the data stored on its servers, it can also find the link to the public
key history. It must therefore be prevented that Twitter can decrypt the private tweets of the
user by retrieving the public key history. For this reason, the public key history is additionally
encrypted symmetrically with the AES-GCM algorithm. The key is stored in the hybrid OSN app
and therefore unknown to Twitter.

When writing a new, private tweet, the system checks whether the public key has been published
before posting. Only if this is fulfilled will the private tweet be encrypted with the private key
and posted.

5.7 Providing Insights to the Service Provider

The requirements mentioned in 4.1 also include the provision of anonymized data for the OSN
service provider. Since the business model of Twitter is based on personal data and therefore
the interests of hybrid OSN are contrary to those of Twitter, the fulfillment of this requirement
is extremely complex.

A prominent feature of Twitter is the analysis and promotion of trends (see Figure 5.7a). The
trends are identified by means of frequently used hash tags and presented in a ranking. Such
data can also be collected and evaluated in the private network without having to establish a
connection to the users.

To collect this information, when a new tweet is posted to the private network, the contained
hashtags are extracted and stored separately (see flowchart Figure 5.3). Similar to the presenta-
tion of trends on Twitter, the trends in the private network are also aggregated on a daily basis
and presented on a website (see Figure 5.7b).

Due to the fact that Gun is JavaScript-based and therefore executable in the web browser, access
to the data from a simple HTML web page can be performed using JavaScript code. The raw
data is loaded and then aggregated and displayed.

5.8 Summary

46 5 Proof of Concept

Trends for you {CEIN iyridOSN - Dashboard

Trending in Germany

#F955GE

rOSSGE Trending Topics on
@ tagesschau, ZEIT OMLINE, and & more are Tweeting 0 1 /03/ 20 1 9

about this

Trending in Germany Hashtag
#wmfra

A . . Privat
Webmontag Frankfurt is Tweeting about this rivate

topSecret

Trending in Germany
#Zidane

37.5K Tweets

hybridOSN

Zinedine Zidane returns as Real
LS Madrid manager after Santiago

IR & theguardian.com

° SPORT1, tagesschau, and 3 more are Tweeting about
this

(a) Twitter trends (b) Hybrid OSN trends

Figure 5.7: Trending hashtags in Twitter and the private network side by side

5.8 Summary 47

6 Evaluation

I will discuss,
* how the requirements defined in chapter 4 were met in the prototype,
e limitations,
* benefits in comparison with the projects mentioned in related work,

¢ a threat model.

49

7 Conclusions

7.1 Summary

7.2 Contributions

7.3 Future Work

51

List of Figures

2.1

2.2

3.1

3.2

3.3
3.4
3.5

4.1

5.1
5.2

5.3

5.4

5.5
5.6

5.7

Schematic representation of various software system architectures. In centralized
applications (A), all clients (blue) are in connection with a central server (red),
while in decentralized applications (B) several servers provide for improved sta-
bility. In distributed applications (C), all nodes have the same role with the same
tasks, which is why we also speak of peers (green).

Search process in unstructured P2P systems [9]

Information flow of a notification. The notification is created, encrypted and
posted to the publisher’s timeline. The notification is then picked up by a for-
warder who follows the publisher. Next, the status update is being processed and
finally posted on the forwarder’s timeline. Lastly, the subscriber who follows the
forwarder receives the notification. [7] e

Schematic representation of the Setup Phase (1), Encryption Phase (2) and De-
cryption Phase (3) and the data flow taking place between the entities.

AETH flow e e
Peepeth architecture e

Concept behind ActivityPub [17] e

Different architectures: a) Use of a central server to which all hybrid OSN users
connect to, b) Creation of a P2P network among the users for data exchange. . . .

Composition of the tweet component from three other components. Several tweet
components are in turn combined to form a feed component.

Flow chart of the process for posting a new tweet either on the public Twitter
network or on the private P2Pnetwork L L o ...

Building block view of the interaction between the different modules when post-
INEANEW EWEEE v i it it et e e e e e e e e e e e e e e e e e e

Flow chart of the process for loading the home timeline forauser

Building block view of the interaction between the different modules when load-
ing the home timelineof auser

Trending hashtags in Twitter and the private network side by side

3

53

List of Tables

2.1 Comparison of different software system architectures on scalability, mainte-
nance, system stability, performance and data availability. The pluses indicate
how positive something is relatively to the other systems. 5

4.1 Interests, attitude towards a hybrid solution and influence on the hybrid solution
of several stakeholders. 25

4.2 The quality goals are the relevant requirements and the driving forces that soft-
ware architects and developers should consider. 27

4.3 Advantages and disadvantages of the different solution strategies for the hybrid
OSN architecture. e 29

5.1 Providers used in the hybrid OSN app in alphabetical order with their purpose. . . 38
5.2 Pages used in the hybrid OSN app in alphabetical order with their purpose. 39

55

Bibliography

[1] diaspora* federation protocol. https://diaspora.github.io/diaspora_federation/index.html.
[2] FAQ for users - diaspora* project wiki. https://wiki.diasporafoundation.org/FAQ for users.
[3] Magic Signatures - diaspora* federation protocol. https://diaspora.github.io/diaspora federation/:

[4] Eine neue Ara beginnt: diaspora plant mit Y Combinator den groRen Neustart, May
2012. https://www.foerderland.de/digitale-wirtschaft/netzwertig/news/artikel/eine-
neue-aera-beginnt-diaspora-plant-mit-y-combinator-den-grossen-neustart/.

[5] Maxwell Salzberg Daniel Grippi. Announcement: Dias-
pora* Will Now Be A Community Project, August 2012.
https://web.archive.org/web/20121109114722/http://blog.diasporafoundation.org/2012/08/27
diaspora-will-now-be-a-community-project.html.

[6] Jorg Daubert, Mathias Fischer, Stefan Schiffner, and Max Miihlhduser. Distributed and
anonymous publish-subscribe. In Javier Lopez, Xinyi Huang, and Ravi Sandhu, editors,
Network and System Security, pages 685-691, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[7] Jorg Daubert, Leon Bock, Panayotis Kikirasy, Max Miihlhauser, and Mathias Fischer. Twit-
terize: Anonymous micro-blogging. In 2014 IEEE/ACS 11th International Conference on
Computer Systems and Applications (AICCSA), pages 817-823. IEEE, 2014.

[8] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. In International Workshop on Peer-to-Peer Systems, pages 53—-65.
Springer, 2002.

[9] Dmitri Moltchanov. Selected DHT algorithms: Chord and Pastry, October 2014.

[10] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable
content-addressable network, volume 31. ACM, 2001.

[11] Chuck Rossi. Rapid release at massive scale - Facebook Code, August 2017.
https://code.fb.com/web/rapid-release-at-massive-scale/.

[12] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing, pages 329-350. Springer, 2001.

[13] Maxwell Salzberg. Kickstarter Pitch, April 2010.
https://web.archive.org/web/20110814222702/http://blog.joindiaspora.com/2010/04/27/kicks
pitch.html.

[14] Maxwell Salzberg. We Made It!, May 2010. https://web.archive.org/web/20110713115706/http:/
did-it.html.

57

[15]

[16]

[17]

[18]

Ben Smith. Project Strobe: Protecting your data, improving our third-party APIs, and sun-
setting consumer Google+, October 2018. https://www.blog.google/technology/safety-
security/project-strobe/.

Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans Kaashoek, Frank
Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking (TON), 11(1):17-32, 2003.

Christopher Lemmer Webber, Jessica Tallon, Erin Shepherd, Amy Guy, and
Evan Prodromou. ActivityPub - W3C Recommendation, January 2018.
https://www.w3.org/TR/activitypub/.

Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D Joseph, and John D
Kubiatowicz. Tapestry: A resilient global-scale overlay for service deployment. IEEE Jour-
nal on selected areas in communications, 22(1):41-53, 2004.

58

Bibliography

Erklarung zur Abschlussarbeit gemaB § 23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Carsten Porth, die vorliegende Masterarbeit ohne Hilfe Dritter und nur
mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die Quellen
entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher
oder dhnlicher Form noch keiner Priifungsbehorde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs.2 APB) ein Tauschungsversuch vorliegt,
der dazu fiihrt, dass die Arbeit mit 5,0 bewertet und damit ein Priifungsversuch verbraucht wird.
Abschlussarbeiten diirfen nur einmal wiederholt werden.

Bei der abgegebenen Masterarbeit stimmen die schriftliche und die zur Archivierung eingere-
ichte elektronische Fassung tiberein.

Bei einer Masterarbeit des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Pldanen.

Darmstadt, den March 13, 2019

Unterschrift

	Introduction
	Motivation
	Challenge
	Research Question
	Outline

	Background
	Software System Architecture
	Centralized Applications
	Decentralized Applications
	Distributed Applications
	Comparison

	Peer-to-Peer Networks
	Unstructured P2P
	Structured P2P

	Web 3.0 - Distributed Apps (dApps)
	Summary

	Related Work
	Privacy through Extensions
	Twitterize
	FaceCloak

	Privacy-protecting Social Networks
	diaspora*
	LifeSocial.KOM

	dApps - The Next Generation Social Networks
	Akasha
	Peepeth

	Protocols
	ActivityPub

	Summary

	Concept of a Hybrid Online Social Network
	Requirements to the Hybrid OSN
	Stakeholders
	Restrictions
	Quality Goals
	Solution Strategy - Architecture
	Solution Strategy - Client
	Summary

	Proof of Concept
	Objective
	Selection of the OSN
	Technology Decisions
	Peer 2 Peer Network
	Using an Existing P2P Network
	Application Framework

	Building Block View
	Scope and Context
	White Box View

	Runtime View
	Post a Tweet
	Load the Home Timeline

	Security
	Realization

	Providing Insights to the Service Provider
	Summary

	Evaluation
	Conclusions
	Summary
	Contributions
	Future Work

	List of Figures
	List of Tables
	Bibliography

