

CertainTrust SDK:
Programmer’s Quick Start

 An introduction into programming Java and JavaScript

with CertainTrust, the Human Trust Interface, and CertainLogic.

Use trust and reputation under uncertainty in your programs.

This document is intended as a programmer’s quick start tutorial to writing

programs using the CertainTrust SDK with both Java and JavaScript.

Introductory notes to instantiating CertainTrust and CertainTrustHTI objects, their

methods and the CertainLogic operators are accomplished by step-by-step tutorials

which re-implement the supplied demonstrators.

More in-depth information can be found in the demonstrators that come with the

CertainTrust SDK package and the sourcecode itself.

CertainTrust SDK: Programmer’s Quick Start
Version 1.0
10 March 2013

Technische Universität Darmstadt
Telecooperation Lab
Hochschulstraße 10
64283 Darmstadt

Prof. Dr. Max Mühlhäuser
max@informatik.tu-darmstadt.de

Florian Volk
florian.volk@cased.de

David Kalnischkies
Maria Pelevina

http://www.tk.informatik.tu-darmstadt.de

mailto:max@informatik.tu-darmstadt.de
mailto:florian.volk@cased.de
http://www.tk.informatik.tu-darmstadt.de/

Table of Contents 1

Table of Contents

Table of Contents .. 1

1. Introduction to the Trust Model CertainTrust ... 2

1.1. CertainTrust ... 2

1.2. Opinions ... 3

1.3. CertainLogic: A Logic for Reasoning under Uncertainty .. 4

2. Core API Documentation .. 6

2.1. The CertainTrust Class ... 6

2.2. CertainLogic Operators .. 7

2.3. The CertainTrustHTI Class .. 8

3. Using Evidences in CertainTrust .. 11

4. Step-By-Step Guide: Java .. 12

4.1. Importing the CertainTrust SDK JAR .. 12

4.2. Project Skeleton Code .. 13

4.3. Creating and Displaying a Human Trust Interface ... 13

4.4. Programmatically Accessing CertainTrust Data .. 14

4.5. Using CertainLogic ... 15

5. Step-By-Step Guide: JavaScript ... 18

5.1. Project Skeleton Code .. 18

5.2. Creating and Displaying a Human Trust Interface ... 19

5.3. Programmatically Accessing the CertainTrust Data .. 19

5.4. Using CertainLogic ... 20

Acknowledgement .. 23

Introduction to the Trust Model CertainTrust 2

1. Introduction to the Trust Model CertainTrust

With IT systems becoming highly distributed and managed by multiple parties, the

successful outcome of user interaction with them has become dependent not only

on secure end-to-end connections to foreign infrastructures or services, but also

on establishing their trustworthiness.

Whenever it is impossible to guarantee particular properties of a specific system

behavior, e.g., due to lack of full knowledge or personal experience, soft security

mechanisms such as computational trust come in play. Trust is an approximator

for future behavior, used to make claims based on direct previous experience of a

user, recommendations from third parties and possibly additional information

such as social relationships or indicators of trustworthiness. Many trust models

have been developed to derive this value and many of them successfully achieved

established goals.

However, there are some issues still left underrepresented by the existing

approaches, two of them being the following:

 Uncertainty associated with the trust value. Whereas the expectation about

future behavior can be generally defined as a relation between positive

and negative experiences, the concept of “lack of information” shouldn’t be

neglected. Insufficient amount of evidence lowers the certainty of the trust

value, which should itself influence the final expectation value

 Evaluation of complex systems, considering the trustworthiness of their

subsystems and atomic components, according to their layout and internal

dependencies.

1.1. CertainTrust

CertainTrust is a novel approach in the field of Computational Trust that addresses

the aspects mentioned above and provides a user-friendly, ready to use, and

consistent way for the evaluation of the trustworthiness of systems, eventually

helping users in their decision making.

It is based on the Bayesian approach, taking big effort into supporting the

uncertainty concept that ensures more realistic and precise estimation of the trust

and ratings. Furthermore, it is completed with a range of standard operators of

propositional logic, which are introduced in the next chapter. These operators

cover most of the common dependencies and relations that can exist between

atomic components or subsystems, thus providing effective tools to model trust

evaluation for composite systems. This is especially important when the

performance of a service highly depends on the reliability of it subcomponents.

Introduction to the Trust Model CertainTrust 3

Not less important for the adaptation of the trust model as a rating system is its

visual representation. That is why a new representation called Human Trust

Interface (HTI) was designed to display a CertainTrust opinion in an intuitively

understandable way. It carries out the representational function, but also the

interactive one: users can modify a CertainTrust opinion and immediately observe

the changes.

The SDK covers two programming languages with the Java and JavaScript

implementations. This way it has been made possible to integrate CertainTrust in

both online and offline applications.

1.2. Opinions

The CertainTrust object models an opinion or a belief in the truth of a proposition.

It is based on the idea, that for a good evaluation, not only a relation between

available positive and negative evidences is necessary, but also the degree of

certainty. The certainty is influenced by a variety of factors: it could fall low if the

number of evidences is regarded to be too small to be representative (even when

all of them are positive) or when they come from unreliable, suspicious third

parties. If the certainty in the provided evidence is low, the evidence has less

influence on the determination of the final belief.

The CertainTrust instance is represented by three parameters (t, c, f): Trust,

Certainty, and Initial Trust. They have the following semantics:

 Trust t [0, 1] indicates the degree to which past observations (if there

are any) support the truth of the proposition. This value is calculated as a

relation between the number of supporting evidences and the overall

number of evidences gained.

Its extreme values can be interpreted in a following way:

Trust = 0: There is only evidence contradicting the proposition.

Trust = 1: There is only evidence supporting the proposition.

 Certainty c [0, 1] indicates the degree to which the trust is considered to

be representative for the future. The higher the certainty of an opinion is,

the higher is the influence of the trust on the expectation value in relation

to the Initial Trust. When the maximum level of certainty (c = 1) is

reached, the Trust value is assumed to be representative for future

outcomes.

Its extreme values can be interpreted in the following way:

Certainty = 0: There is no evidence available.

Introduction to the Trust Model CertainTrust 4

Certainty = 1: The collected evidence is considered to be

representative.

 The Initial Trust f [0, 1] expresses the assumption about the truth of a

proposition in absence of evidence.

As this Trust/Certainty view is in many ways based on the evidence-based view,

both are compatible and interchangeable within the CertainTrust SDK. Apart from

described (t, c, f) triple, the CertainTrust keeps, updates, and allows manipulating

the corresponding values r and s (number of positive and negative evidences the

opinion is built on). An additional parameter N denotes the amount of evidences

considered to be sufficient to provide representative evaluation. As the provided

amount of evidences approaches the value N, the certainty of an opinion rises.

The Human Trust Interface displays the Expectation about the truth of the

proposition, calculated from Trust, Certainty and Initial Trust:

1.3. CertainLogic: A Logic for Reasoning under Uncertainty

It is common for the quality of a service to depend on the performance of its sub-

elements. The layout of the system, as well as dependencies between its

components, can be modeled in terms of propositional logic. And to evaluate the

trustworthiness of such a composite system, based on the evidence about its

atomic components, several operators have been developed.

The CertainLogic operators can be separated into two groups:

The first three (OR, AND, NOT) work with independent opinions. In this context it

most usually means “on two different subjects” (e.g., one opinion on the latency of

a service, another on its security). These operators can be used to build and

evaluate systems that rely on many elements.

 The operator OR is applicable when opinions for two independent

propositions form a new opinion reflecting the degree of truth for at least

one out of both propositions. It is similar to Boolean logic‘s OR: at least

one positive opinion results in a positive opinion, otherwise a negative

one.

Introduction to the Trust Model CertainTrust 5

 The operator AND is applicable when opinions for two independent

propositions are aggregated to produce a new opinion reflecting the

degree of truth of both propositions simultaneously. It is similar to Boolean

logic‘s AND: at least one negative opinion leads to a negative opinion.

 The operator NOT is applicable when an opinion about a proposition

needs to be negated. It should be used whenever degrees of “No” are

actually positive answers.

Another group consists of the operators wFUSION and cFUSION. These are

intended to fuse multiple dependent opinions on the same subject into one (e.g., a

group of n users tests the service under the same conditions and gives n individual

opinions on its performance).

 Weighted fusion, wFUSION, is used to aggregate several opinions about

the same thing. The opinions being fused are weighted according to their

importance or influence.

 Conflict-aware fusion, cFUSION, is additionally capable of dealing with

the degree of conflict between opinions. When the difference of opinion

becomes too significant, the certainty of the fused value drops.

Core API Documentation 6

2. Core API Documentation

This section presents the two classes implemented in the CertainTrust SDK.

 CertainTrust implements the trust calculation in both evidence

representation and trust representation. It also implements all

CertainLogic operators.

 CertainTrustHTI implements the visual representation for trust values, the

Human Trust Interface.

2.1. The CertainTrust Class

The CertainTrust class models an opinion. Both representations – evidence-based

and Trust/Certainty-based – are available concurrently and can be used together.

An expectation value can be calculated from the opinion, too.

A CertainTrust object can be assigned to a CertainTrustHTI object. In this case, the

HTI always updates whenever the CertainTrust object changes. If the HTI is not

set to read-only, the user can modify the assigned CertainTrust object.

Any other object can register as observer for a CertainTrust object and will be

notified on any changes. Any amount of observers is possible but might not make

sense in all use cases.

 CertainTrust(N)
Creates a new CertainTrust object with (r,s) = (0,0), (t,c,f) = (0.5,0,0.5)

and sets the amount of expected evidence to N.

 CertainTrust(r, s, N)
Creates a new CertainTrust object with supplied amount of positive (r)

and negative (s) evidences and sets the amount of expected evidence to N.

 CertainTrust(t, c, f, N)
Creates a new CertainTrust object with supplied trust (t), certainty (c) and

initial trust (f) values along with the amount of expected evidence N.

 CertainTrust(t, c, f, N, DoC)
Exactly like CertainTrust(t, c, f, N) but also sets the degree of conflict to

DoC, which will be used by the following call of the cFUSION operator

instead of the default value of 0.

Core API Documentation 7

Getters and Setters for all parameters are available and called getX(), setX(). Note

that some parameters (like t and c) are only set together.

Method name Functionality

getC() Returns the certainty value.

getT() Returns the trust value.

setTC(newT, newC) Sets both certainty and trust.

getF() Returns the initial trust value.

setF(newF) Sets the initial trust value.

getR() Returns the amount of positive evidence (can be float).

addR(incR) Increases the amount of positive evidence by incR.

getS() Returns the amount of negative evidence (can be float).

addS(incS) Increases the amount of positive evidence by incR.

setRS(newR, newS) Overrides the amount of both positive and negative

evidence.

getN() Returns the maximal amount of expected evidence.

setN(newN) Sets the maximal amount of expected evidence.

getDoC() Returns the degree of conflict. Only set by the cFUSION

operator.

setDoC(newDoC) Sets the degree of conflict.

getExpectation() Returns the expectation assigned to the opinion.

Observers can be registered by calling addObserver(newObserver) and

unregistered by calling removeObserver(oldObserver). When a CertainTrust

object changes, all observers’ update() methods are called.

2.2. CertainLogic Operators

All CertainLogic Operators are implemented within the CertainTrust class as n-ary

functions (except NOT). They are used in the following form:

Observers are not copied to the newly created resultOpinion object.

// resultOpinion = ctObject1 OR ctObject2 OR ctObject3 OR … OR ctObjectN
resultOpinion = ctObject1.OR(ctObject2, ctObject3, …, ctObjectN);

Core API Documentation 8

In both Java and JavaScript, any amount (larger than zero) of opinions (as

CertainTrust objects) can be supplied to the operator functions.

Method name Functionality

OR(opinion1, …) Returns the result of CertainLogic OR

applied to all supplied opinions.

AND(opinion1, …) Returns the result of CertainLogic AND

applied to all supplied opinions.

NOT(opinion) Returns the result of CertainLogic NOT

applied to the opinion.

wFusion([opinion1, …], [weight1, …]) Returns the result of CertainLogic

wFUSION (weighted fusion) applied to all

supplied opinions with weight1 for

opinion1 and so on.

cFusion([opinion1, …], [weight1, …]) Returns the result of CertainLogic

cFUSION (conflict-aware fusion) applied

to all supplied opinions with weight1 for

opinion1 and so on. The returned object

has the degree of conflict set.

2.3. The CertainTrustHTI Class

The CertainTrustHTI class implements a graphical representation of an opinion,

intended for human usage. The graphical representation is called Human Trust

Interface, thus HTI.

Objects of this class are always bound to a CertainTrust object which holds the

opinion data to visualize. It is automatically registers as an observer for the

CertainTrust object it is bound to. The user interface can be set to be read-only.

Otherwise, a user can manipulate the associated CertainTrust object via the

CertainTrustHTI interactively, but in case this is not wanted the interface can also

be set to read-only to be purely for visualization.

 CertainTrustHTI(certainTrust)

Core API Documentation 9

Creates a CertainTrustHTI object and associates it with the supplied

opinion certainTrust.

 CertainTrustHTI(certainTrust, config)
Same as CertainTrustHTI(certainTrust), but additional configuration

(described below) can be supplied. In JavaScript the parameter config has

the type object, in Java it has the type Map<String, String>. All settings can

be set independently and if not set their default values are used.

It is for example possible to set the HTI to be read-only in JavaScript with:

In Java, the same can be achieved with:

Option name Functionality

canvas.height Defines the HTI’s height in pixels.

canvas.width Defines the HTI’s width in pixels.

label.lang Use English ("en") or German ("de") localization as default

for the labels. Detailed localization can be performed by

assigning strings to label.f, label.t, label.c, and label.e

while setting label.lang to any other value than “en” or

“de”.

label.f Sets the localization for the initial trust label.

label.t Sets the localization for the trust label.

label.c Sets the localization for the certainty label.

label.e Sets the localization for the expectation label.

readonly Disables any user input to the HTI. Specific elements can

be set to read-only with readonly.f, readonly.t, readonly.c

and readonly.e respectively. Modification with the mouse

can be prevented with readonly.mouse.

readonly.f Disables user input to the initial trust field.

readonly.t Disables user input to the trust field.

readonly.c Disables user input to the certainty field.

readonly.e Disables user input to the expectation field.

var hti = new CertainTrustHTI(myOpinion, {readonly: true;});

Map<String,String> config = new HashMap<String, String>();
config.put("readonly", "true");

CertainTrustHTI hti = new CertainTrustHTI(myOpinion, config);

Core API Documentation 10

readonly.mouse Disables mouse input.

id
JavaScript only

Assigns the HTML-id “certaintrust-widget-“+id to the

created main DOM element.

line.cap
JavaScript only

Defines the visuals for the crosshair: edge style.

line.height
JavaScript only

Defines the visuals for the crosshair: line height.

line.width
JavaScript only

Defines the visuals for the crosshair: line width.

line.style
JavaScript only

Defines the visuals for the crosshair: line style.

domReturn
JavaScript only

If set to true, the constructor does not return the HTI but

its main element in the DOM.

domParent
JavaScript only

Sets the parent DOM element under which the HTI is

created as a child node. Used to control where the HTI

shows up on an HTML page.

domBefore
JavaScript only

Similar to domParent, but inserts the HTI before the

supplied DOM element.

domAfter
JavaScript only

Similar to domBefore, but inserts the HTI after the

supplied DOM element.

To refresh a CertainTrustHTI’s UI even if the associated CertainTrust opinion did

not change, call update().

Using Evidences in CertainTrust 11

3. Using Evidences in CertainTrust

CertainTrust opinions are based on gathered evidences, which are binary

experiences. Such evidence is either positive or negative. The ratio between

positive (r) and negative (s) evidences defines the trust value of an opinion. The

amount of evidences relates to the certainty value of an opinion. The expectation

value is calculated using a Beta probability density function parameterized with r

and s. See [Ries2009]1 for details.

The amount of evidences in the CertainTrust API can be manipulated using the

following three functions:

 addR(x)
This function adds x positive evidences to a CertainTrust object.

 addS(x)
Analogously, this function adds x negative evidences to a CertainTrust

object.

 setN(x)
This function changes the expected amount of evidences.

 setRS(r, s)
This function replaces the current amount of evidences with r new positive

evidences and s new negative evidences.

All three parameters can also be set using the CertainTrust constructor. Getter

functions getR(),getS(), and getN() are available.

The JavaScript demonstrator evidences.html provides a CertainTrust object and

the possibility to manipulate the amount of collected evidences.

1
 Sebastian Ries. Extending Bayesian Trust Models Regarding Context-Dependence and User Friendly

Representation. In: Proceedings of the 2009 ACM Symposium on Applied Computing, ACM Press, 2009.

Download available at: http://dl.acm.org/citation.cfm?id=1529573

http://dl.acm.org/citation.cfm?id=1529573

Step-By-Step Guide: Java 12

4. Step-By-Step Guide: Java

We expect you to be familiar with your development environment of choice and

the Java programming language (including Swing) in general.

In the following, you will build a small demonstrational Java application that

displays a CertainTrust object visually and accesses its attributes

programmatically. The user interface looks similar to the screenshot below.

You can find the complete source code for this example in the folder

Documentation/JavaDemonstrator and the file Minimal.java.

4.1. Importing the CertainTrust SDK JAR

As a first step after creating your project, you must import the CertainTrust SDK

JAR file which is usually named CertainTrustSDK.jar, maybe including a version

number in the filename. To accomplish this in the Eclipse Development

Environment, copy the file into any of your project’s (sub-)directories, right-click

the file in the Package Explorer and select Build Path -> Add to Build Path.

Now, the namespace CertainTrust should be available in your project. The two

relevant classes in this namespace are

 CertainTrust.CertainTrust, which holds the data objects encapsulating the

(c,t,f)-triples and the methods to apply CertainLogic operators to other

CertainTrust objects

 CertainTrust.CertainTrustHTI, which is the Swing-based user interface for

displaying and manipulating CertainTrust objects.

Step-By-Step Guide: Java 13

4.2. Project Skeleton Code

This code creates a single window with a button.

4.3. Creating and Displaying a Human Trust Interface

To display a single HTI, a CertainTrust data object that stores the (c,t,f)-triple is

needed. A CertainTrust data object is created by calling its constructor:

This constructor takes one parameter: the value of N, the maximal expected

evidence. Other constructors are available, please refer to prior sections.

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JOptionPane;

public class Minimal extends JFrame implements ActionListener {
 private static final long serialVersionUID = -447167281994322634L;

 // this object stores the trust data and implements the operators
 CertainTrust clObject;

 public Minimal() {
 setTitle("Minimal CertainTrust API Demonstrator");
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLayout(new FlowLayout());

 // CertainTrust goes here

 // add a button to read the CertainTrust values
 JButton button = new JButton("Read CertainTrust values");
 add(button);

 this.setSize(450, 250);
 this.setVisible(true);
 }

 public static void main(String[] args) {
 new Minimal();
 }
}

import CertainTrust.CertainTrust;

…

CertainTrust ctObject = new CertainTrust(10);

Step-By-Step Guide: Java 14

When a data object is available, an HTI can be created:

After this step, the user interface is final and should look similar to the one in the

screenshot.

Each HTI is automatically bound to its data object via the observer pattern. This

means that every change made in the HTI automatically propagates back to the

data object.

4.4. Programmatically Accessing CertainTrust Data

The demonstrator includes a button underneath the HTI. When the button is

clicked, a popup window should appear and show the (c,t,f)-triple stored in the

CertainTrust data object.

For the sake of simplicity in this example, the Minimal class used for the JFrame

also serves as ActionListener for the button.

All properties of the CertainTrust data object can be accessed using the

appropriate getter functions. Although in our example, the data object is

manipulated using the HTI, any property can also be set programmatically by

calling CertainTrust’s setters.

The complete source code of the final example is printed below. Try it yourself!

import CertainTrust.CertainTrust;
import CertainTrust.CertainTrustHTI;

…

// this object stores the trust data and implements the operators
CertainTrust ctObject;

…

// display a single HTI
ctObject = new CertainTrust(10);
add(new CertainTrustHTI(ctObject));

@Override
public void actionPerformed(ActionEvent arg0) {
 // whenever the button is clicked
 JOptionPane.showMessageDialog(this,
 "Values of the CertainTrust object:\n"
 + "\nInit. value: " + this.ctObject.getF()
 + "\nTrust: " + this.ctObject.getT()
 + "\nCertainty: " + this.ctObject.getC()
 + "\nExpectation: " + this.ctObject.getExpectation());
}

Step-By-Step Guide: Java 15

4.5. Using CertainLogic

In this tutorial, the task is to implement a full demonstrator for the CertainLogic

operators AND and OR. It requires the knowledge of the above tutorial.

The source code is available in Documentation/JavaDemonstrator/demo-

nstrator.java.

The Java applet allows the users to calculate an AND as well as an OR operation

of two CertainTrust data objects:

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JOptionPane;

import CertainTrust.CertainTrust;
import CertainTrust.CertainTrustHTI;

public class Minimal extends JFrame implements ActionListener {
 private static final long serialVersionUID = -447167281994322634L;

 // this object stores the trust data and implements the operators
 CertainTrust ctObject;

 public Minimal() {
 setTitle("Minimal CertainTrust API Demonstrator");
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLayout(new FlowLayout());

 // display a single HTI
 ctObject = new CertainTrust(10); // first, we need a CertainTrust data object
 add(new CertainTrustHTI(ctObject));

 // add a button to read the CertainTrust values
 JButton button = new JButton("Read CertainTrust values");
 button.addActionListener(this);
 add(button);

 this.setSize(450, 250);
 this.setVisible(true);
 }

 @Override
 public void actionPerformed(ActionEvent arg0) {
 // whenever the button is clicked
 JOptionPane.showMessageDialog(this,
 "Values of the CertainTrust object:\n"
 + "\nInit. value: " + this.ctObject.getF()
 + "\nTrust: " + this.ctObject.getT()
 + "\nCertainty: " + this.ctObject.getC()
 + "\nExpectation: " + this.ctObject.getExpectation());
 }

 public static void main(String[] args) {
 new Minimal();
 }
}

Step-By-Step Guide: Java 16

At the start, six CertainTrust data objects are created and bound to HTIs. The four

HTIs on the left serve as input parameters for the operations, the two ones ion the

right display the results and are therefore set to be read-only.

This setting can be made at the creation of the HTI by supplying a Map that

contains the configuration options as String pairs. Please refer to section 2.3 for all

available options.

To keep the rightmost HTIs updated, an Observer is bound to each of the two

HTIs serving as input elements for the operands.

In the demonstrator, a new class called ANDObserver is implemented to calculate

the AND value of the first two CertainTrust data objects and to display the result

in the rightmost HTI.

Map<String,String> htiConfig = new HashMap<String, String>();
htiConfig.put("readonly", "true");

new CertainTrustHTI(new CertainTrust(10), htiConfig);

Step-By-Step Guide: Java 17

An instance of this class is registered to observe the input HTIs.

The most important line in the code of ANDObserver is the application of the

AND operator to the operands:

The AND() method of CertainTrust creates a new CertainTrust data object holding

the result of the calculation. The outcome of the calculation done is Operand1
AND Operand2. Note that the first operand is always the data object, from which

the AND() method is called.

Furthermore, the method consumes any amount of parameters. This allows

calculations like Operand1 AND Operand2 AND Operand3 AND … OperandN.

The same process is used to “wire up” the OR operation.

import java.util.Observable;
import java.util.Observer;
import CertainTrust.CertainTrust;

public class ANDObserver implements Observer {

 private CertainTrust Operand1;
 private CertainTrust Operand2;
 private CertainTrust Result;

 public ANDObserver(CertainTrust Operand1, CertainTrust Operand2, CertainTrust Result) {
 this.Operand1 = Operand1;
 this.Operand2 = Operand2;
 this.Result = Result;
 }

 @Override
 public void update(Observable arg0, Object arg1) {
 // calculate the result of the AND operation

// and update the Result CertainTrust data object
 CertainTrust ANDResult = this.Operand1.AND(this.Operand2);
 this.Result.setF(ANDResult.getF());
 this.Result.setTC(ANDResult.getT(), ANDResult.getC());
 }
}

// wire all components forming the AND operation
ANDObserver andObserver = new ANDObserver(AndOperand1, AndOperand2, AndResult);
AndOperand1.addObserver(andObserver);
AndOperand2.addObserver(andObserver);

CertainTrust ANDResult = this.Operand1.AND(this.Operand2);

CertainTrust ANDResult = this.Operand1.AND(this.Operand2, this.Operand3, this.Operand4, this.Operand5);

Step-By-Step Guide: JavaScript 18

5. Step-By-Step Guide: JavaScript

We expect you to be familiar with your development environment of choice,

JavaScript programming and basic HTML.

The HTI requires the HTML5 canvas object to draw the user interface. In older

versions of HTML, the SDK is not available and/or produces unwanted results

(depending on the browser).

In the following, you will build a small demonstrational web page with the same

function that can be found in the Step-By-Step tutorial for the Java language. The

web page will look similar to the screenshot below:

You can find the complete source code for this example in the folder

Documentation/JavaScriptDemonstrator and the file minimal.html.

5.1. Project Skeleton Code

For any HTML5 page, two script files and one stylesheets need to be imported:

CertainTrust.js containts the CertainLogic data object and operators, while

CertainTrustHTI.js implements the visual interface. The CertainTrustHTI.css file

includes standard styles for the visual interface. To change the visual

representation, just edit the CSS file.

Simply copy the three files into the same directory as your HTML file or adapt the

path definitions of the script and link tags to your needs.

Step-By-Step Guide: JavaScript 19

5.2. Creating and Displaying a Human Trust Interface

To display a single HTI, a CertainTrust data object that stores the (c,t,f)-triple is

needed. A CertainTrust data object is created by creating a new instance. The

parameter is N, the maximal expected evidence. More parameters are available,

please refer to prior sections.

When a data object is available, an HTI can be created. It is inserted into the DOM

tree wherever the call with new is executed. More fine-grained control over the

DOM tree position is possible. Please refer to section 2.3 for all options.

Each HTI is automatically bound to its data object via the observer pattern. This

means that every change made in the HTI automatically propagates back to the

data object.

5.3. Programmatically Accessing the CertainTrust Data

The demonstrator includes a button underneath the HTI. When the button is

clicked, a popup window should appear and show the (c,t,f)-triple stored in the

CertainTrust data object.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>CertainTrust Demonstrator in JavaScript</title>

 <!-- include these two scripts and the CSS to enable both CertainTrust and the HTI -->
 <script type="text/javascript" src="CertainTrust.js"></script>
 <script type="text/javascript" src="certainTrustHTI.js"></script>
 <link rel="stylesheet" type="text/css" href="certainTrustHTI.css"/>

</head>
<body>
 <script type="text/javascript">
 // CertainTrust goes here
 </script>
</body>
</html>

var ctObject = new CertainTrust(10);

var ctObject = new CertainTrust(10);
var hti = new CertainTrustHTI(ctObject);

Step-By-Step Guide: JavaScript 20

All properties of the CertainTrust data object can be accessed using the

appropriate getter functions. Although in our example, the data object is

manipulated using the HTI, any property can also be set programmatically by

calling CertainTrust’s setters.

The complete source code of the final example is printed below. Try it yourself!

5.4. Using CertainLogic

In this tutorial, the task is to implement a full demonstrator for the CertainLogic

operators AND and OR. It requires the knowledge of the above tutorial.

The source code is available in Documentation/JavaScriptDemonstrator

/demonstrator.html.

<script type="text/javascript">
 var ctObject = new CertainTrust(10);
 var hti = new CertainTrustHTI(ctObject);

 function showValues() {
 alert("Values of the CertainTrust object:\n"
 + "\nInit. value:\t" + ctObject.getF()
 + "\nTrust:\t" + ctObject.getT()
 + "\nCertainty:\t" + ctObject.getC()
 + "\nExpectation:\t" + ctObject.getExpectation());
 }
</script>

<button type="button" onclick="showValues();">Read CertainTrust values</button>

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>CertainTrust Demonstrator in JavaScript</title>

 <!-- include these two scripts and the CSS to enable both CertainTrust and the HTI -->
 <script type="text/javascript" src="CertainTrust.js"></script>
 <script type="text/javascript" src="certainTrustHTI.js"></script>
 <link rel="stylesheet" type="text/css" href="certainTrustHTI.css"/>

</head>
<body>
 <script type="text/javascript">
 var ctObject = new CertainTrust(10);
 var hti = new CertainTrustHTI(ctObject);

 function showValues() {
 alert("Values of the CertainTrust object:\n"
 + "\nInit. value:\t" + ctObject.getF()
 + "\nTrust:\t" + ctObject.getT()
 + "\nCertainty:\t" + ctObject.getC()
 + "\nExpectation:\t" + ctObject.getExpectation());
 }
 </script>

 <button type="button" onclick="showValues();">Read CertainTrust values</button>
</body>
</html>

Step-By-Step Guide: JavaScript 21

The web page allows the users to calculate an AND as well as an OR operation of

two CertainTrust data objects:

At the start, six CertainTrust data objects are created and bound to HTIs. To

create an HTI as the child of a specific DOM tree element (in our example stored

in the variable DOMElement), supply the parameter domParent to the

constructor:

The four leftmost HTIs serve as input parameters for the operations, the two

rightmost ones display the results and are therefore set to be read-only.

This setting can be made by supplying a readonly parameter to the constructor.

Please refer to the documentation for all available options.

To keep the rightmost HTIs updated, an observer is bound to each of the two HTIs

that serve as input elements for the operands.

In the demonstrator, a new prototype called ANDObserver is implemented to

calculate the AND value of the first two CertainTrust data objects and to display

the result in the rightmost HTI.

var ctObject = new CertainTrust(10);
var HTI = new CertainTrustHTI(ctObject, {domParent: DOMElement});

var ctObject = new CertainTrust(10);
var HTI = new CertainTrustHTI(ctObject, {readonly: true});

// ANDObserver is used for the AND calculation
var ANDObserver = {
 update: function() {
 // calculate the CertainTrust.AND for both values
 var CT_result = ctAndOperator1.AND(ctAndOperator2);

 // update the HTI which displays the result
 ctAndResult.setF(CT_result.getF());
 ctAndResult.setTC(CT_result.getT(), CT_result.getC());
 }
};

Step-By-Step Guide: JavaScript 22

The ANDObserver is registered to observe the input HTIs.

The most important line in the code of ANDObserver is the application of the

AND operator to the operands:

The AND() method of CertainTrust returns a new CertainTrust data object

instance holding the result of the calculation. The outcome of the calculation done

is Operand1 AND Operand2. Note that the first operand is always the data object,

from which the AND() method is called.

Furthermore, the method consumes any amount of parameters. This allows

calculations like Operand1 AND Operand2 AND Operand3 AND … OperandN.

The same process is used to “wire up” the OR operation.

ctAndOperator1.addObserver(ANDObserver);
ctAndOperator2.addObserver(ANDObserver);

var CT_result = ctAndOperator1.AND(ctlAndOperator2);

var CT_result = ctAndOperator1.AND(ctAndOperator2, ctAndOperand3, ctAndOperand4, ctAndOperand5);

Acknowledgement 23

Acknowledgement

The work presented here was performed in the context of the Software-Cluster

project InDiNet (www.software-cluster.org) and funded by the German Federal

Ministry of Education and Research (BMBF) under grant no. “01IC10S04”. The

authors assume responsibility for the content.

The Source Code is subject to the terms of the Mozilla Public License, v. 2.0. If a

copy of the MPL was not distributed with this file, you can obtain one at

http://mozilla.org/MPL/2.0/.

http://www.software-cluster.org/

