
OpenCCE Documentation

1

1 General Information

OpenCCE is an Eclipse plugin that provides tool support for Java Crypto APIs.
The target audience is regular Java application developers, especially those with
only little or no experience in cryptography.

The tool supports developers in two ways. First, a user may select a crypto-
graphic task they intend to implement and OpenCCE generates a secure code
snippet into the user’s Java project in Eclipse. Second, in addition, OpenCCE
statically analyzes any code that uses crypto APIs to ensure a secure usage.

This documentation is structured as follows. Section 2 illustrates how an
end-user may interact with OpenCCE. Section 3 describes how crypto experts
may contribute either new cryptographic tasks or primitives to OpenCCE.
Lastly, Section 4 provides a tutorial for bridging C/C++ and Java code for
contributors who prefer to implement their primitives in these languages.

2 How the End-user Uses OpenCCE

Application developers are the end-users of OpenCCE. They are supported by a
code generation and a static analysis component. Code generation needs to be
triggered explicitly, while static analyses run automatically in the background.

The code generation component provides wrappers for existing crypto APIs.
These wrappers are task-based, that is, a wrapper implements a higher-level
cryptographic task (e.g., communication over a secure channel or encrypt data
using a given password) using one or more of the supported APIs. To trigger
the code generation, the user has to click on the OpenCCE icon in the tool bar.
Figure 1 shows the window that opens where the user can select one of the tasks
they want to implement.

The user then has to answer a few high-level questions (e.g., How important
is performance to you, Do you want to implement the server or the client?).
Each answer translates into a requirement or a constraint that the solution
must satisfy. As a very simple example, if the user is configuring a symmetric
encryption task as shown in Figure 2, and specifies that security is important
to them, a constraint that the key size of the cipher should be greater than or
equal to 128 bits will be created. When all questions for a particular task have
been answered, OpenCCE suggests a list of possible algorithms and their con-
figurations, from which the user may select one. Figure 3 shows how OpenCCE
displays the list. After selecting a configuration, the wrapper code that imple-
ments the task using the selected configuration is generated into the application
developer’s project.

The default mode of operation of OpenCCE is the beginner mode where
the application developer answers high-level questions as explained above. An
alternative mode of operation is the expert mode where the developer configures
the individual properties of the algorithms that the selected task consists of.
For example, a more experienced developer can select “>= 128” for the key size
of a cipher.

2

Figure 1: OpenCCE Task Overview

Figure 2: Configuration Question for Symmetric Encryption Task

3

Figure 3: Algorithm Selection for Symmetric Encryption Task

4

The static analyses that OpenCCE runs in the background check the appli-
cation developer’s code for misuses of crypto APIs or related code (e.g., gener-
ation of key material). In case such a misuse is detected, OpenCCE generates
an Eclipse error message.

3 How to contribute to OpenCCE

In general, crypto experts can contribute in two ways. First, they can con-
tribute support for new primitives (e.g., encryption schemes, key agreement
algorithms, digital signature algorithms). Second, they can integrate new cryp-
tographic tasks that can be offered to users of OpenCCE. In this guide, the term
cryptographic task refers to a more or less complex component that involves one
or multiple cryptographic primitives. Examples for cryptographic tasks include
file encryption, communication over secure channel, and user authentication
mechanisms. Depending on how a task is integrated into OpenCCE, it can use
primitives that have been integrated before, but primitives are not directly ex-
posed to the end user. For easier distinction, this guide separates contributing
crypto experts into primitives developers and task developers.

In order to integrate a new primitive/task, three components need to be
provided.

• Implementation

• Usage example and rules

• Model describing the involved algorithms

The implementation should encompass the full functionality of the primi-
tive/task. The usage example in general represents the way the functionality
of the primitives/task should be accessed. To prevent developers from misusing
primitive/task, usage rules describe how they are supposed to be used. These
rules are translated into static analyses that are run when the application de-
veloper is writing the code, not only once it is run. This enables developers to
correct their mistakes before deploying their application. These rules may also
help application developers who do not use OpenCCE’s code generation func-
tionality, but want to implement a cryptographic task themselves as the static
analyses might still alert them to API misuses. Finally, the model describes the
used cryptographic algorithms and the attributes relevant to determine their se-
curity level. Throughout, the documentation shows only excerpts of the model.
Contributors who are interested in a different part or the full model are referred
to the OpenCCE maintainers.

3.1 Integrating Primitives

Implementation

Primitives need to be implemented as Cryptographic Service Providers (CSP)
in Java. The JDK does not simply provide a set of implementations of cryp-

5

Figure 4: CSP Selection during Runtime

tographic primitives to its users. Instead, a set of standardized and algorithm-
specific interfaces is provided by the Java Cryptography Architecture(JCA).
These interfaces must then be implemented by CSPs in order to provide cryp-
tographic primitives to an application developer. The goal of this design is to
make the architecture around cryptography both independent of algorithms and
implementations as well as easily extensible. It enables primitives developers
to implement their own algorithms as CSPs and plug them into the JCA. One
CSP may include multiple primitives of multiple algorithm types.

The JCA comes with a number of default providers that implement the most
common cryptographic algorithms in several configurations. BouncyCastle, an-
other cryptographic library for Java, can also be used as a CSP. It implements
a wide range of cryptographic algorithms and configurations, including the ones
implemented by the default CSPs.

During runtime, the Java Virtual Machine (JVM) maintains an ordered list
of all plugged in CSPs. As illustrated in Figure 4, when an algorithm in a
certain configuration is requested by some application code, the JVM iterates
through the list and asks each provider if it supports the requested algorithm
and configuration. In case several CSPs support the same configuration, the
implementation of the first CSP in the list to support the configuration is se-
lected.

Oracle provides extensive documentation on both JCA and CSPs as well as
on how to implement a Cryptographic Service provider. Readers who wish to
implement their primitives in C/C++ are referred to Chapter 4.

6

https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/HowToImplAProvider.html

Usage Example and Rules

During the code generation, OpenCCE generates code into the application de-
veloper’s project, that uses a CSP to perform a cryptographic operation (e.g.
encryption, computation of a MAC). To ensure a secure usage of the imple-
mented CSP, primitives developers should first provide a code snippet as a
secure and correct usage example. OpenCCE can then use this snippet as the
code it generates into the project as is shown in Listing 1. The Listing illus-
trates a simple encryption with Java Crypto APIs that avoids usual pitfalls (as
described below).

1 public byte [] encrypt (byte [] s e c r e t , SecretKey key) {
2 byte [] ivb = new byte [1 6] ;
3 SecureRandom . ge t In s tance (”SHA1PRNG”) . nextBytes (ivb) ;
4 IvParameterSpec iv = new IvParameterSpec (ivb) ;
5
6 Cipher c = Cipher . g e t In s tance (”AES/CBC/PKCS5Padding”) ;
7 c . i n i t (Cipher .ENCRYPT MODE, key , i v) ;
8 return c . doFinal (s e c r e t) ;
9 }

Listing 1: Secure Usage Example of Symmetric Encyption in Java

Furthermore, developers of primitives should provide usage rules for their
CSP, which OpenCCE transforms into static analyses. The static analyses then
makes sure the application developer’s code is not breaking any of the specified
usage rules.

To illustrate the necessity for such rules, consider the following two examples.
The code snippet in Listing 2 is a simple example of a symmetric encryption
using the JCA. The call in Line 11 instantiates an object of class Cipher,
which is using the symmetric block cipher AES. Although not obvious at first
glance, method ge t In s tance () does in fact not expect a single algorithm,
but instead a transformation consisting of cipher, block chaining mode and
padding scheme. If the latter two are not provided by the developer (as in
the code snippet below), the exact behaviour depends on the selected CSP.
For the default CSP of the JCA, this means, that ECB is selected as block
chaining mode by default. Unfortunately, ECB encrypts identical plaintext
blocks to identical ciphertext blocks. Consequently, any encryption of more
than one block using this configuration is deemed insecure. To prevent such
misuses, contributors may specify how to use their CSP correctly and securely.
Currently, there is no formal specification language to describe such usage rules.
We thus ask primitives developers to simply describe their usage rules in English
until the appropriate language is developed. For the above example, such a rule
could look like this: “When calling the method Cipher . g e t In s tance () , the
passed parameter must be of the following form: ’Cipher/BCM/PAD’. Any call
with fewer parameters is insecure.”

10 public byte [] encrypt (byte [] s e c r e t , SecretKey key) {

7

11 Cipher c iph = new Cipher . g e t In s tance (”AES ”) ;
12 c iph . i n i t (Cipher . Encrypt Mode , key) ;
13 return c iph . doFinal (s e c r e t) ;
14 }

Listing 2: Insecure Usage Example of Symmetric Encyption in Java

One might argue that, in the above example, one does not need usage
rules but instead only reasonable and secure default values. This is not al-
ways the case, however. Assume a lattice-based encryption scheme. Being a
public key encryption scheme, a key pair is needed for a successful encryp-
tion. Listing 3 illustrates how to generate a key pair using the JCA. In Class
KeyPairGenerator, there are two methods i n i t i a l i z e () that can both
be used to initialize the object. Both methods need to be implemented for each
algorithm the CSP should support key pair generation for. The first one in Line
19 takes an algorithm-specific parameter object as input that can be defined to
include any number of parameter objects of arbitrary type. However, the second
method of that name in Line 20 takes an int parameter as input. Following
the official JavaDoc of the method, this int parameter is generally interpreted
as the key size of the key pair that is to be generated. Unfortunately, one can-
not simply generate key pairs for lattice-based encryption schemes based on a
single key length as the keys depend on multiple different parameters. Since the
method needs to be implemented nonetheless, the CSP developer may throw an
UnsupportedOperation Exception when this method is called. While this
solves the problem for the CSP developer, it makes the provider easy to misuse.
In this case, a rule such as “When KeyPair.getInstance is called and the name
of a lattice-based algorithm is passed as a parameter, the method initialize(int)
must not be called.” might be added to prevent a misuse. With this rule,
OpenCCE can point the developer to the misuse at compile time already and
prevent the buggy code from being deployed.

15 public stat ic void main (St r ing . . a rgs) {
16 KeyPairGenerator kpg = KeyPairGenerator .
17 ge t In s tance (”LP ”) ;
18
19 kpg . i n i t i a l i z e (new LPAlgorithmParameterSpec (. . .)) ;
20 kpg . i n i t i a l i z e (1024) ;
21
22 KeyPair kp = kpg . generateKeyPair () ;
23 }

Listing 3: Insecure Usage Example for Key Pair Generation in Java

The actual description is being developed at time of writing this. The rules
in English will inform this process and will be translated into that language
once the process is finished by the language designers. Primitive developers
who provided rules for their CSP in English will not need to provide them again
in the description language.

8

Model

In addition to implementation and usage rules, the algorithms that are to be
integrated into OpenCCE need to be modelled in the variability modelling lan-
guage Clafer. This is necessary since developers of tasks might not implement
their tasks by using algorithms directly (e.g., an encryption using RSA) but
may only specify certain requirements an algorithm needs to comply to (e.g.,
encryption with an asymmetric cipher with a minimal key size of 4096 bit) and
leave the selection of the actual algorithm to the user of OpenCCE. The algo-
rithms hence work as basic building blocks for the supported tasks. In this case,
OpenCCE determines a list of potential algorithms and configurations based on
the variability model.

In general, the model consists of all algorithms and their configurations
OpenCCE supports at a given point in time. At the time of writing, a ba-
sic model consisting of a number of cipher algorithms as well as stumps for
other classes of algorithms (e.g., MACs, key agreement, and key derivation al-
gorithms) are part of the model. An abbreviated model is shown in Listing 4.
Lines 24 to 36 define the algorithm classes cipher and asymmetric cipher and
their attributes. To integrate lattice-based schemes into this model, all lines in
green need to be added. This extension can be separated into three different
kinds of changes. First, class Cipher gets an additional attribute quantum (see
line 30) to specify whether an algorithm is pre- or post-quantum. Second, a new
class Latt iceBasedCipher and its attributes are added (see lines 38 to 42).
This class is a subclass of AsymmetricCipher and inherits all its attributes.
Third, from Line 44 to line 61, an actual lattice-based encryption scheme is mod-
elled. This algorithm is modelled as an instance of the Latt iceBasedCipher
class and all its attributes (e.g. messageSize , c i p h e r S i z e) as well as the
attributes it inherited from AsymmetricCipher and Cipher are defined.

24 abstract Cipher
25 name → string
26 d e s c r i p t i o n → string
27 s e c u r i t y → Secur i ty
28 performance → Performance
29 secProperty → AttackModel
30 quantum → XQuantum
31
32 abstract AsymmetricCipher : Cipher
33 keySizePub → integer
34 keyS izeSec → integer
35 performanceEnc → Performance
36 performanceDec → Performance
37
38 abstract Latt iceBasedCipher : AsymmetricCipher
39 msgSize → integer
40 c i p h e r S i z e → integer
41 n → integer

9

42 q → integer
43
44 LP: L a t t i c e
45 [name = ”LP”]
46 [d e s c r i p t i o n = ”Linder-Peikert Scheme”]
47 [msgSize = 1 | | msgSize = 2 | | msgSize = 3]
48 [n = 1 | | n = 2 | | n = 3]
49 [q = 20 | | q = 40]
50 s → i n t e g e r
51 [quantum = post]
52 [n = 1 ⇒ q = 20 && s = 6 && s e c u r i t y = Broken &&
53 c i p h e r S i z e = 22 * msgSize]
54 [n = 2 ⇒ q = 40 && s = 9 && s e c u r i t y = Weak &&
55 c i p h e r S i z e = 30 ∗ msgSize]
56 [n = 3 ⇒ q = 40 && s = 7 && s e c u r i t y = Medium &&
57 c i p h e r S i z e = 36 * msgSize]
58 [keySizePub = n * n * 25]
59 [keyS izeSec = log * 26]
60 [performanceEnc = Slow]
61 [performanceDec = Fast]

Listing 4: Clafer Model for Lattice Based Encryption Schemes

3.2 Integrating Tasks

Tasks are the main way users of OpenCCE interact with the tool. When a
user wants to implement a cryptographic task (e.g., communicate over a secure
channel, encrypt data using a password), they can open the tool and select the
respective task. OpenCCE then guides them through a set of questions, lets
them select one combination of algorithms and algorithm configurations, and
generates the necessary code.

For this to work properly, task developers are required to contribute four
components. In addition to the three general components - implementation,
usage example and rules, and variability model - they also have to pro-
vide the high-level questions that OpenCCE asks the user in the beginning
to configure the task. To simplify the extension of the model and the develop-
ment of the questions, these steps may be conducted collaboratively with the
OpenCCE developers. Shape and form of all of these components depend on
the exact way the task is being integrated.

Implementation

The implementation for a task may be provided to OpenCCE as source code or
a jar file. In this case, end-users get direct access to the code. If task developers
do not wish to share the source code, they may provide access to the task’s
functionality indirectly through an API. Suppose a task developer wants to

10

offer long-term document archiving as a cryptographic task in OpenCCE. An
archive requires the documents to stored on a hard-disk. To not require the
user to manage these files on their own, the task developer offers their archive
as a web service that stores the documents on their server. In this case, the task
developer does not have to provide any implementation directly to OpenCCE.

A task developer may choose to let the application developer configure the
task in terms of used algorithms among other things. This configuration is done
through the dialogue system after the OpenCCE user selects a task they want
to implement.

Usage Example and Rules

Regardless of how OpenCCE users access a task’s functionality, task develop-
ers need to provide a usage example for the implementation. If the imple-
mentation is provided as source code or a jar file, the usage example simply
illustrates how one may use the implementation. If the end-user has to access
the functionality through an API, the generated usage code should reflect how
the API should best be used. In the above example of a document archiv-
ing web service, the usage example should showcase how to use important
calls like addDocumentToArchive () , r e t r i eveF i l eFromArch ive () ,
and verifyDocument () .

During the code generation, OpenCCE generates the usage example into
the class the application developer has currently opened. A usage example for
a symmetric encryption task is shown in Listing 5. At first, a secret key is
generated using the KeyGenerator class. Then, the key and the plain text
are passed as parameters to the actual encryption method, which is shown in
Figure 2.

62 public void performEncryption (byte [] p l a i n t e x t) {
63 KeyGenerator keyGen = KeyGenerator . g e t In s tance (”AES”) ;
64 keyGen . i n i t (2 5 6) ;
65 SecretKey key = keyGen . generateKey () ;
66
67 Enc enc = new Enc () ;
68 return enc . encrypt (p l a in t ex t , key) ;
69 }

Listing 5: Secure Usage Example for Symmetric Encryption Task

On top of that, task developers must provide usage rules for their usage
example as well as the implementation if the user is not only accessing it through
an API. Since there is no formal description language for this specification at
the time of writing, rules in plain English suffice. These rules in English will
serve as examples when designing the actual description language in English
will not need to provide them again in the description language.

Consider the usage example for a symmetric encryption task from Listing
5 again. Since this code is generated directly into the application developer’s

11

project they might alter the code. They could, for instance, generate the key as
it is shown in Listing 6. In that listing, the key material is a fixed hard-coded
string (see Line 72), while the class KeyGenerator is using a CSPRG for the
key material. Since the key would no longer be random and could be retrieved
by decompiling the respective Java class file, the encryption cannot be deemed
secure anymore. A rule for the static analysis to prevent this misuse could look
like this: “The key passed to the encrypt method must be created using the
KeyGenerator class for the respective algorithm.”

70 public void performEncryption (byte [] p l a i n t e x t) {
71 SecretKey secretKeySpec = new SecretKeySpec (”key”
72 . getBytes () , ”AES”) ;
73
74 Enc enc = new Enc () ;
75 return enc . encrypt (p l a in t ex t , key) ;
76 }

Listing 6: Insecure Usage Example for Symmetric Encryption Task

In terms of usage rules for the actual task implementation, consider Listing
2. It shows a possible implementation of method encrypt () that is being
called in the previous code snippet and illustrates how to potentially imple-
ment an encryption in Java. This implementation of the symmetric encryption
task, however, contains a misuse of the underlying API. For a more detailed
description of the misuse, readers are referred to Section 3.1. As stated there, a
rule such as “When calling the method Cipher . g e t In s tance () , the passed
parameter must be of the following form: ’Cipher/BCM/PAD’. Any call with
fewer parameters is insecure.” would prevent the misuse in the given case and
OpenCCE would generate an error message.

Model and Configuration Questions

In general, task developers should let the the end user configure their imple-
mentation. For an appropriate configuration point, assume that for a task an
asymmetric encryption needs to be performed. Instead of implementing an en-
cryption using, say, RSA with a fixed key length, the developer may outsource
this decision to the OpenCCE user. To ensure that OpenCCE presents the
end-user with only appropriate algorithms to pick from, the requirements are
specified in the model in the variability modeling language Clafer.

To accomplish this, the given task must be modelled top-down from the task
to the algorithms, which serve as basic building blocks. Consider the symmetric
encryption example in Listing 7. In Lines 77 to 90, cipher related algorithm
classes are defined. The following lines define two instances of symmetric block
ciphers, namely AES and DES. Finally, in Lines 108 to 111, the task element
is defined as using one algorithm of type SymmetricBlockCipher. All com-
ponents of the task must be modelled until they are mapped to one of the
algorithm classes. In the case of the symmetric encryption task, this goal is al-
ready reached as it directly uses a symmetric block cipher. When defining more

12

complex tasks, several layers between the task element and the basic building
blocks might be necessary.

77 abstract Cipher
78 name → string
79 d e s c r i p t i o n → string
80 s e c u r i t y → Secur i ty
81 performance → Performance
82
83 abstract SymmetricCipher : Cipher
84 keyS ize → integer
85
86 abstract SymmetricBlockCipher : SymmetricCipher
87 mode → Mode
88 padding → Padding
89 [mode != ECB]
90 [mode = CBC => padding != NoPadding]
91
92 AES: SymmetricBlockCipher
93 [name = ”AES”]
94 [d e s c r i p t i o n = ”Advanced Encryption Standard”]
95 [keyS ize = 128 | | keyS ize = 192 | | keyS ize = 256]
96 [keyS ize = 128 ⇒ performance = VeryFast &&
97 s e c u r i t y = Medium]
98 [keyS ize > 128 ⇒ performance = Fast &&
99 s e c u r i t y = Strong]

100
101 DES: SymmetricBlockCipher
102 [name = ”DES”]
103 [d e s c r i p t i o n = ”Data Encryption Standard”]
104 [performance = VeryFast]
105 [s e c u r i t y = Broken]
106 [keyS ize = 56]
107
108 SymmetricEncryption : Task
109 [d e s c r i p t i o n = ”Encrypt data using a secret key”]
110 c iphe r → SymmetricBlockCipher
111 [c iphe r . s e c u r i t y > Medium]

Listing 7: Clafer Model for Symmetric Block Ciphers

Lastly, if developers want to allow the end user of OpenCCE to config-
ure their task implementation, they are also required to provide the questions
OpenCCE can ask the user. These questions can include a precise specification
of the expected security level, as is the case in Figure 2, and their answers may
influence the variability model as well as the generated code.

13

4 JNI

Developers of cryptographic components who want to contribute to OpenCCE
must provide their primitives as CSPs, but might nonetheless wish to implement
their primitives in C or C++. In this case, the C(++) implementation needs to
bridged to Java. There are multiple ways of doing this, but the tutorial below
focusses on the Java Native Interface(JNI).

JNI can be used to bridge a C(++) and a Java program. The setup for
JNI is different on different plattforms, although the general steps are the same.
Using it on Windows is not recommended, as it leads to configuration issues,
but the tutorial below nevertheless details the steps necessary to set JNI up on
a Windows machine. Users of Linux and MacOS may skip step 0.

0. Install MinGW and add $Path to mingw/ bin to PATH variable.

MinGW is a development environment that provides windows with c and
c++ compilers gcc and g++ among other things.

1. Install JDK and add $Path to JDK/ bin to PATH Variable.

2. Create sample Java project with the following Java class (e.g. HelloWorld.java)

1 public class HelloWorld {
2 native St r ing helloFromC () ;
3 stat ic {
4 System . loadLibrary (” c t e s t ”) ;
5 }
6 stat ic public void main (St r ing argv []) {
7 HelloWorld hel loWorld = new HelloWorld () ;
8 System . out . p r i n t l n (hel loWorld . helloFromC ()) ;
9 }

10 }

Listing 8: HelloWorld.java

helloFromC () is the name of the method the c(++) library needs to
provide. c t e s t is the name of the library (i.e., the c(++) program). The
library has to be part of Java’s library path. As the current path of a java
program is always part of the Java library path, it is easiest to have all
files in the same directory for the first attempt. In the main method, the
c(++) method helloFromC () is called and its return value is printed.

3. Open console and navigate to the JNI project folder.

4. Compile java program by running javac HelloWorld . java.

5. Run javah HelloWorld to generate header file.

6. Open the header file, which should look like this:

14

http://www.mingw.org/wiki/Getting_Started
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

11 /∗ DO NOT EDIT THIS FILE − i t i s machine generated ∗/
12 #include < j n i . h>
13 /∗ Header f o r c l a s s Hel loWorld ∗/
14
15 #ifndef Inc luded Hel loWor ld
16 #define Inc luded Hel loWor ld
17 #ifde f c p l u s p l u s
18 extern ”C” {
19 #endif
20 /∗
21 ∗ Class : Hel loWorld
22 ∗ Method : helloFromC
23 ∗ Signature : () Ljava/ lang / S t r ing ;
24 ∗/
25 JNIEXPORT j s t r i n g JNICALL Java HelloWorld hel loFromC
26 (JNIEnv ∗ , j o b j e c t) ;
27
28 #ifde f c p l u s p l u s
29 }
30 #endif
31 #endif

Listing 9: HelloWorld.h

Line 25 show the method signature of the method the java class expects
to be provided by the library. This method needs to be implemented for
the interface to work.

7. Create a C(++) source file (e.g., ctest.c) and copy&paste the signature
from the header file.

8. Write implementation for method.

32 #include < j n i . h>
33 #include <s t d i o . h>
34
35 JNIEXPORT j s t r i n g JNICALL Java HelloWorld hel loFromC
36 (JNIEnv∗ env , j o b j e c t obj) {
37
38 return (∗ env)−>NewStringUTF (env , ” He l lo from C!\n”) ;
39 }

Listing 10: ctest.c

Please note: The method signature in the header file does not contain
any parameter names. If the signature is copy-pasted into the source file,
parameter names must be added to make the program compilable.

15

9. Compile c(++) source file into library by running

gcc −o c t e s t . $FE −shared −I$Path to JDK\ i n c lude
−I$Path to JDK\ i n c lude \$OS c t e s t . c − l c

$FE is the platform-dependent file extension for the library. Please refer
to https://stackoverflow.com/questions/37203247 for the mapping.
$OS is the operating system that the compiler is running on (e.g. ’win32’
for Windows systems, ’linux’ for Linux systems)
Please note: If the path to the JDK includes a whitespace (e.g. C:/Program
Files(x86)/...), compilation errors can be resolved by enclosing the path
in quotation marks.
Please note: In case of an error message along the lines of ”unknown
type name ’ int64’ ...” please follow the instructions on this website:
http://www.graphics-muse.org/wp/?page_id=147

10. Run java program by running java HelloWorld in the console. If ev-
erything works, the program should print ’Hello from C!’.

16

https://stackoverflow.com/questions/37203247
http://www.graphics-muse.org/wp/?page_id=147

	General Information
	How the End-user Uses OpenCCE
	How to contribute to OpenCCE
	Integrating Primitives
	Integrating Tasks

	JNI

