123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- using System;
- using System.Collections.Generic;
- using System.Linq;
- using System.Text;
- using System.Threading.Tasks;
- using Emgu.CV;
- using Emgu.CV.Structure;
- namespace bbiwarg.Utility
- {
- class Kalman2DPositionFilter
- {
- private Kalman kalman;
- private float measurementNoiseFactor, processNoiseFactor;
- public bool Initialized { get; private set; }
- // state: x, y, v_x, v_y
- // x: current x position
- // y: current y position
- // v_x: velocity in x direction
- // v_y: velocity in y direction
- public Kalman2DPositionFilter(float measurementNoiseFactor = 1.0e-1f, float processNoiseFactor = 1.0e-4f)
- {
- this.measurementNoiseFactor = measurementNoiseFactor;
- this.processNoiseFactor = processNoiseFactor;
- reset();
- }
- public void reset()
- {
- // 4 state variables and 2 measurements (0 controls)
- kalman = new Kalman(4, 2, 0);
- // transition matrix
- Matrix<float> transitionMatrix = new Matrix<float>(new float[,]
- { {1.0f, 0.0f, 1.0f, 0.0f}, // x = x + v_x
- {0.0f, 1.0f, 0.0f, 1.0f}, // y = y + v_y
- {0.0f, 0.0f, 1.0f, 0.0f}, // v_x = v_x
- {0.0f, 0.0f, 0.0f, 1.0f}}); // v_y = v_y
- kalman.TransitionMatrix = transitionMatrix;
- // measurement matrix
- Matrix<float> measurementMatrix = new Matrix<float>(new float[,]
- { {1.0f, 0.0f, 0.0f, 0.0f}, // first measurement = x
- {0.0f, 1.0f, 0.0f, 0.0f} // second measurement = y
- });
- kalman.MeasurementMatrix = measurementMatrix;
- // measurement noise covariance matrix
- Matrix<float> measurementNoiseCovarianceMatrix = new Matrix<float>(2, 2);
- measurementNoiseCovarianceMatrix.SetIdentity(new MCvScalar(measurementNoiseFactor));
- kalman.MeasurementNoiseCovariance = measurementNoiseCovarianceMatrix;
- // process noise covariance matrix
- Matrix<float> processNoiseCovarianceMatrix = new Matrix<float>(4, 4);
- processNoiseCovarianceMatrix.SetIdentity(new MCvScalar(processNoiseFactor));
- kalman.ProcessNoiseCovariance = processNoiseCovarianceMatrix;
- // error covariance post matrix (initial value)
- Matrix<float> errorCovariancePostMatrix = new Matrix<float>(4, 4);
- errorCovariancePostMatrix.SetIdentity();
- kalman.ErrorCovariancePost = errorCovariancePostMatrix;
- Initialized = false;
- }
- public void setInitialPosition(Vector2D initialPosition)
- {
- // initial state (x, y, v_x, v_y)
- Matrix<float> initialState = new Matrix<float>(new float[] { initialPosition.X, initialPosition.Y, 0.0f, 0.0f });
- kalman.CorrectedState = initialState;
- Initialized = true;
- }
- public Vector2D getPrediction()
- {
- Matrix<float> predicton = kalman.Predict();
- return new Vector2D(predicton[0, 0], predicton[1, 0]);
- }
- // updates the filter and returns the corrected position
- public Vector2D getCorrectedPosition(Vector2D rawPosition)
- {
- Matrix<float> rawPositionMatrix = new Matrix<float>(new float[,]
- { {rawPosition.X},
- {rawPosition.Y}});
- // prediction according to model
- Matrix<float> prediction = kalman.Predict();
- // corrected point
- Matrix<float> estimate = kalman.Correct(rawPositionMatrix);
- return new Vector2D(estimate[0, 0], estimate[1, 0]);
- }
- }
- }
|