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Abstract

The number of attacks towards the cyberspace is constantly increasing with their complexity. Over the last years En-
terprise networks are targeted with hazardous malware to exploit their data and communication. Industrial Control
Systems (ICS) are responsible for distribution of basic necessities like electricity, water and gas. Such systems are highly
complex, critical and huge. ICS systems comprise of sensory devices, controllers, real time units, command servers con-
nected with an internal network. For better control and management, these devices are connected to the Internet.Failure
of such critical systems lead to devastated environments and hence there is a need to secure them.

ICS systems are further classified to Supervisory Control and Data Acquisition (SCADA) systems. SCADA forms a
standard for majority of ICS systems deployed worldwide. These systems have been targeted previously with malware
such as Stuxnet. Stuxnet was capable of controlling the Programmable Logic Controllers (PLC) and infecting them with
malicious code to change their behavior. There is a need to detect the propagation of such malware. ICS systems are
hard to protect using passive systems like Intrusion Detection System (IDS) as they rely on a signature database. Also,
strategized off-beat attacks cannot be detected using IDS. Zhung et al. showed that although the detection accuracy of the
IDS is high the number of false positives are also high as these systems are sensitive to noise[67]. An active mechanism
that provides alert mechanisms on malicious packets and features an analysis framework with lesser false positives is
necessary.

The advent of better smartphones has changed the way people interact and also leverage its resources to constantly
provide better productivity to users. We propose HosTaGe ICS, a mobile ICS honeypot which actively detects attacks
with respect to ICS SCADA systems. HosTaGe, an Android based mobile honeypot is extended to HosTaGe ICS, to
accommodate ICS profiles like a nuclear power plant.

The protocols and the target systems that are specific to ICS SCADA systems like Modbus and S7 are implemented
to simulate the behavior of end systems. The behavior and response mechanisms are also implemented to facilitate
the attacker to pursue his attacks. Malware detection is a crucial challenge that involves studying the behavior and its
propagation techniques. We create the environment for the propagation of Stuxnet, a popular malware that can bring
down ICS systems and detect its propagation using HosTaGe ICS. The results are further verified by the Virustotal [54]
database.

The attack strategies used by attackers nowadays involve distributed, single level protocol, multi level protocol/mul-
tistage and payload level attacks. Multistage attacks refer to attacks that originate from the same source and attempt
to exploit different types of protocols within a small window of time. It is one of the prevailing and effective strategies
used by attackers these days to perform social engineering and compromise the end systems. During the course of the
thesis, multistage attack patterns were observed. The detection of such attacks was incorporated into the design of our
honeypot. HosTaGe ICS features the detection mechanism for multistage attacks. Interesting results obtained during the
evaluation period are briefly summarized in the Evaluation section.

HosTaGe ICS incorporates a signature generator module where signatures are generated based on the attacks recorded
with Modbus, Siemens S7 protocol (S7) and HTTP protocols. The signatures that are generated by Hostage ICS can be
incorporated into the Bro Network Intrusion Detection System (NIDS) to check incoming packets for malicious payloads.
This feature enables HosTaGe ICS to be deployed inline with Bro NIDS to provide better attack detection capabilities.
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1 Introduction

Power, water and gas form basic necessities for human life today. ICS are used to automate the generation and distribution
of these vital necessities. These are control systems used in industrial production that include SCADA[5] and DCS[6]
systems. These systems manage critical infrastructure and are deployed in industrial sectors. SCADA systems are used
to control distributed assets using centralized data acquisition and supervisory control. DCS manage active production
systems within a local area such as a factory using supervisory and regulatory control. PLCs are devices used for discrete
control of specific applications and generally provide regulatory control for the critical machinery[62]. PLCs automate
the control and management of critical systems in an ICS environment.

SCADA systems are distributed systems used to manage and control geographically dispersed assets, often scattered
over large distances. The data acquisition and control are centralized in these environments and are critically managed.
PLCs are major components in such operations. They are deployed to regulate the sensor information and provide an
interface to convert signals from human-to-machine and vice versa. PLCs are continuously being evolved in order to have
better performance and simplified communication. The protocol responsible for communication between these devices
is Modbus[36]. PLCs today are able to communicate to the Internet through the advancements in the field of PLC and
Modbus-TCP[50]. This makes the devices being controlled through the Internet. SCADA systems were mainly designed
for interaction between devices in a distributed network without considering security. This made the systems and the
communication vulnerable.

PLCs handle critical systems, but have lesser computational resources as compared to standard desktop hosts. As
modern day PLCs have Internet communication capabilities, they are open for attacks from adversaries. This is due
to the lack of security measures employed in securing both the device and the communication. As these devices have
limited resources, ensuring security mechanisms may prove expensive. The manufacturers focused on providing better
compatibility for communication rather than securing it. This vulnerability was exploited early by the attackers. In 2009,
Stuxnet[28] a malware infected a nuclear enrichment facility in Iran. Stuxnet is still considered to be the most complex
engineered malware until today for its stealthy and propagation techniques[68]. It was considered to be powerful enough
to cause a devastative impact. There are also recently discovered worms like Flame [59], that are observed to have similar
impact. This opens up new challenges in securing SCADA networks.

Many enterprises and infrastructure use PLCs today to automate processes. It is extensively used in airports, packaging
industries, fuel stations, frozen food storage units and even in super markets. Securing the networks that use such
devices is necessary. IDS form front line defense systems against external attacks. They are widely deployed in enterprise
networks to safeguard their internal networks. NIDS[45] are passive devices that are used to monitor networks or systems
in enterprise infrastructure. The detection mechanism is either anomaly or signature based. Signature[65] based IDS
monitors the packets and compare them with a database of signatures. Anomaly[18] based IDS detect intrusions by
monitoring the system activity and classifying it as normal or anomalous.

The signature based approach can be easily tricked by introducing varied payloads to defy the signatures checked by the
IDS. A well strategized and tailored attack can easily pass through the system to gain access into the network [24]. A more
active approach towards detecting strategized attacks with lesser false positives is the use of honeypots[42]. Honeypots
are decoys that pose as target systems for the external viewer. It simulates specific services and reply mechanisms to
emulate the complete system behavior. Any traffic directed towards honeypots can be considered as an attack. The
number of false positives are comparatively lower in honeypots than in NIDS. They can also work as an additional line
of defense along with IDS in traditional as well as in ICS networks [64].

A study made by DELL[9] showed that the attacks on Industrial components like PLCs doubled over the years, and
even more dangerous is the fact that such incidents are unreported. The research found a hundred percent increase in
attacks against ICS environments like SCADA.

Figure 1 gives an understanding of the key SCADA attack methods. It shows that about half of the total attacks were
based on improper assignment on bounds of a memory buffer, improper input validation and vulnerabilities in credentials
management. These vulnerabilities pose as a huge threat to ICS. Figure 2 represents the number of attacks performed
over the months. There is a steep increase in the number of attacks performed over the months, expressing the need to
safeguard ICS systems and also detect these attacks.

The majority of industrial systems today use SCADA for controlling and automating their processes. Securing these
devices are as much important like any other hosts in the network because these devices are programmable and could
affect the normal automatized working. An overview of the above survey indicates various vulnerabilities and the need
to secure the ICS environment. As PLCs are not only used in industrial infrastructure, but also in smaller environments
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Figure 1: SCADA attack methods[9]

Figure 2: SCADA hits on a monthly basis.[9]

where automation is required. It is very important and crucial to have less complex, usable and robust monitoring system.
Such systems can be used to identify malicious packets and provide a flexible and analytical framework.

Smart phones provide enormous computing capability with high flexibility. They form a platform for developing light
weight and reliable applications. These devices commute with the user and are highly available. They are able to connect
to wide area networks and offer various modes of operational connectivity. We propose a lightweight, low interaction
mobile based honeypot HosTaGe ICS which leverages the computing power and the above features of modern day smart
phones to detect ICS specific attacks.

1.1 Contribution

This thesis aims at identifying and detecting the ICS SCADA specific attacks using HosTaGe ICS, a low interaction mobile
honeypot platform. The master and slave profiles, which are a part of ICS infrastructure are simulated by emulating the
constituent protocols. An analysis of the communication paradigm and the security loopholes of an ICS SCADA system is
made, to simulate the services offered by the system.
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The thesis also concentrates on contributing to many security related research questions of ICS SCADA systems like
identifying ICS specific malware , its propagation and devising a method to detect malware through our honeypot. A
detailed study about the malware and its propagation is made to model the detection capability into HosTaGe ICS.

During the course of the thesis, a pattern of attacks was observed and inferred to be Multistage attacks. We formally
model the multistage attack strategy used by attackers to compromise the targets. Through an effective model, we further
implement the detection of such multistage attacks.

Honeypots today are used inline with IDSs for increased detection accuracy. We also contribute towards this paradigm
by a signature generation module that generates signatures for attacks received on specific protocols. The attacks identi-
fied through our multistage attack detection module are also leveraged to create policies for the Bro Intrusion Detection
Monitor. The signatures and policies generated from HosTaGe ICS can be deployed on the Bro NIDS for effective moni-
toring of malicious packets.

Search engines are an effective tool for looking up resources in the Internet. Shodan a search engine provides its users
with information regarding vulnerable devices in the Internet. Shodan probes the Internet to find vulnerable devices.
The effective probing strategy of Shodan fetches as much information required to determine the vulnerabilities of a target
system. Our honeypot setup received these probes during the evaluation period. We further investigate the impact of
these probes on our honeypot and make interesting observations.

1.2 Outline

The thesis mainly focuses on detecting attacks with respect to ICS environment. The outline of the thesis is as follows.
Section 2 provides a pre-study of ICS SCADA systems, security concerns with respect to ICS SCADA systems, the Modbus
protocol and honeypots.

A study about the Siemens Simatic PLC family is presented in section 2.4. Section 2.6 provides an overview of the
related work in the field of honeypots and also SCADA specific honeypots. Multistage attacks are briefly discussed in
section 2.6.5 and section 2.6.6 giving an introduction to Signature Generation module of HosTaGe ICS.

Section 3 proposes a solution with a system design involving discussion of HosTaGe as an ICS perspective in section 3.2.
The protocols, formal models and detection mechanisms are briefed in their corresponding sections.

We present the implementation ideas of HosTaGe ICS in section 4 as a honeypot with discussion related to detecting
internal attacks, malware detection, multistage attacks in the forthcoming sections. The implementation of the signature
generation module is elaborated in section 4.5.

The evaluation of the thesis is discussed in section 5. It focuses on evaluation of a single protocol attack and detection
of Multistage signatures. The impact of Shodan probes and the observation is open in section 5.4. Section 5.5 provides
an overview of the performance of HosTaGe ICS as an Android application. The limitations of our work are discussed in
section 5.6.

Section 6 aggregates the work done on HosTaGe and the future enhancements are specified in section 6.1.
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2 Background and Related Work

The following sections provide a background on ICS SCADA, its security perspectives, the Modbus and S7 protocols,
Siemens Simatic S7 PLC and honeypots. Section 2.6 discusses the related work in the area of honeypots, further classified
to mobile honeypots and SCADA honeypots.

2.1 Background

ICS form a dominant portion in present day industries. ICS components include actuators, sensors, networking devices,
controlling systems and PLCs . The sensors form a major portion of ICS as they provide continuous feed of critical in-
formation which is used to automate and control other systems. The PLC is another such important component for the
ICS . This interface allows a programmer to implement a logic to automate the systems based on the data received from
sensors. There are mainly two different types of ICS. The major type is SCADA, which are deployed on geographically
widespread and are controlled using a central location. Examples include nuclear power plants, water and power distri-
bution where there is a need for constant monitoring and critical automation. The second type of ICS is the Distributed
Control Systems (DCS). On the contrary, DCS are not centralized, but distributed across a network. We focus more on
ICS SCADA systems as they are being deployed in major infrastructures as a standard today.

The SCADA infrastructure have a lot of components and devices which need constant communication between them.
The ICS SCADA systems involve the interaction of many sub-modules and devices that will be discussed below in the
following sections.

2.1.1 ICS SCADA

SCADA is an industrial automation control system at the core of several industries today including energy, oil and gas,
power, water and recycling, manufacturing and many more. SCADA provides the benefit of, simple configuration and
usability.

The basic architecture of SCADA involves communication of information from sensors or manual inputs to PLCs or
Real Time Unit (RTU)s. PLCs process the information as per the logic deployed in them and then forward this information
to workstations/servers running SCADA applications. Figure 3 describes the basic architecture of a SCADA system which
consists of sensors, PLCs, master hosts and the controller hosts. Data is fetched from the sensors and is processed on
PLCs. The Human Machine Interface (HMI) displays this processed data to the user.

Maturit
y

Stage

Sensors 
Sends data to PLCs or RTUs

Manual Input
Sends data to PLCs or RTUs

PLCs or RTUs 
Feeds data to SCADA system

HMI/SCADA Computer
Supervise and control from a 

CPU

HMI/SCADA Panel View
Supervise and control from 

an operator terminal

             
               HMI

PLC 1 PLC 2

Figure 3: SCADA Architecture
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SCADA systems involve control and network components. The following are the list of control components in SCADA
systems:

• RTU:These devices are time constraint hardware that fetch data from sensors and convert it to digital data. The
converted data is further sent to the master system or the supervisory system. RTUs receive commands from the
supervisory systems. The devices possess arithmetic processors to perform logical operations on the data received
from sensors.

• PLC: These devices fetch data from sensors that are embed to heavy machinery such as spinning centrifuges.
Further, they convert the analog data received to digital data. PLCs possess higher processing power than RTUs
to perform complicated operations on the data received. The controllers can embed logic into PLCs for a specific
operation. PLCs are preferred over RTUs in certain critical environment due to their flexibility and customization
features. PLCs can be made compatible for interaction with devices from different manufacturers. These devices
also posses expansion slots for scalability.

• Telemetry systems: They are used to connect PLCs and RTUs with supervisory system centers, and controllers
in enterprise networks. In a typical scenario, they include leased lines, LAN cables with switches and Wide Area
Network (WAN) circuits lines. Some networks also have wireless transmission capabilities. Such networks have
wireless telemetry via satellite uplink and broadband radio of microwaves.

• Data and Control Server: Data acquisition systems are software that are used to achieve connectivity to the device
interfaces through telemetry lines with the deployed PLCs and RTUs. The software enable users to access remote
device data from field devices through SCADA protocols.

• HMI: The HMI is responsible for presenting the processed data in human readable form. Users interact with the
field devices and controllers through HMI to issue commands and control them. The HMI acts a client interface to
receive data from remote data acquisition servers.

• Historian software: This software stores and represents the data graphically for statistical evaluation. It contains
a database that stores data which is time stamped. The data can also be stored as a part of event handling. This
software is also capable of retrieving data from the data acquisition servers.

Different network characteristics exist for every layer within the control systems. The network topologies vary with
vendors or manufacturers and also on different implementations. Modern day SCADA systems are open to the Internet
and as a result, enterprise integration can also be achieved. The control networks work in hand with the corporate
enterprise networks to manage more efficiently and control the systems from outside networks. The following are the
major network components of an ICS network:

• Fieldbus Network: This is used to achieve connectivity between PLCs and other controllers in the network. The
need for point to point cabling is avoided between the controller and every slave using the fieldbus network.
Fieldbus supports various communication protocols. Every device has a unique identifier for the messages sent.
This way there is no collision of messages during processing.

• Control Network: The controller networks connect the supervisory systems and master systems to the slave
devices.

• Communications Routers: The basic functionality of a router is to transmit messages between networks. Routers
in SCADA systems are used to connect Local Area Network (LAN) to a WAN and also connecting huge enterprise
networks to bridge long-distance networks. They also connect field devices to outer networks for command and
control.

SCADA applications help in monitoring and analyzing the data. The application help the device controllers and
operators to work efficiently. Modern SCADA systems allow real time data from the plants to be accessed from anywhere
in the world. This also means that it provides attackers an opportunity to exploit the data and its availability. Exploiting
SCADA systems can cause catastrophe as it may result in huge damage to the environment and people in the plant. We
try to identify the attacks and exploits and detect them using our mobile honeypot.
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2.1.2 Security Overview of SCADA ICS

ICS SCADA systems are highly distributed. They are used to control and manage geographically dispersed plants, often
scattered over thousands of kilometers. In these areas, centralized data acquisition and control are critical to system
operation. They are applicable in circulation systems such as water distribution and wastewater collection systems, oil
and natural gas pipelines and electrical power grids on systems. A SCADA control center provides centralized monitoring
and control for long distance separated sites with monitoring systems. The systems also process the data acquired from
these sites. The data received from remote sites that are driven by automation or by an operator, supervisory commands
can be pushed to remote station control devices, which are often referred to as field devices. These devices manage local
operations such as switching control units and pumps, retrieving data from sensors and local environment monitoring.

The devices at the field sites are controlled and managed through the control center. This requires a secure and robust
communication line between the control center and the field site. This network is critical. This is usually established
through the Modbus TCP/IP over the Ethernet. It is usually advised [49] to place the SCADA devices on a network that
is not physically connected to any other networks.

Bailey et al. [10] proposed honeypots as a solution to SCADA security monitoring. SCADA systems today have evolved
from complex infrastructure to simple and well packaged network architecture. This makes SCADA systems usable for
critical systems as it is simple to manage. Further, the threat landscape of SCADA is huge due to the various critical
environments under which it is deployed. Below are some of the underlying threat areas that SCADA systems are
subjected to today.

• Supply Chain: A product is engineered and manufactured by a group of vendors in different manufacturing units.
The final product is aggregated from all the units later for assembly before it is provided for the requester. This
makes some room for unintentional error and also induced error like, the insertion of malicious functionality with
respect to a specific customer, usage of low quality, less secure electronics and finally, poor engineering practices.
The errors may also occur at the final assembly parts where these parts are not assembled or tampered for specific
induced intentions. The requesters have no idea of these errors until the casualties occur as they do not have
quality check units to investigate the products once they are received or deployed.

• Vendor Backdoors: These are the most serious threats that are hard to detect. Vendors install backdoors[1]
on products to gain access to control end systems. Backdoors sometimes also have covert data leaking channels
to remote command and control servers. These backdoors are not documented in any catalogs provided to the
customers. Securing from such attacks is very difficult as they are not accounted for. In such cases honeypot acts
as a good solution as it is capable of storing all the connection activities which make later investigations possible.

• Protocol Vulnerabilities: The protocols that are associated with SCADA like Modbus and S7 communication
were not designed keeping security as a requirement. They do not support authentication, encryption and non-
repudiation as they were proved to be expensive operations on the data communicated. In such environments,
unauthenticated hosts can form legitimate packets and establish connection with any devices. Many of the proto-
col interaction takes place in plain text thereby making the communication completely visible. Unauthenticated
systems running tools like sniffers and monitors can misuse this for knowing and probing the environment.

• Malware Propagation Techniques: SCADA systems form the backbone of ICS. The initial infrastructure of the
intranet involves different components and devices as discussed in section 2.1.1. Through continuous probing and
sniffing techniques, adversaries learn more about the infrastructure components and also the interaction between
systems. This is a useful technique to design strategies for malware propagation in SCADA networks. It could also
be called Social Engineering [53].

The other form of designing strategies would be the use of attack trees to assess and determine the vulnerabilities
and flaws of a target system. This was initially proposed by Bruce Schneier [46]. Attack trees provide a structured
and flexible means of pursuing analysis on protocols, applications and networks. They form a strong representation
of the attack strategies designed for compromising systems in a SCADA network communication using the Modbus
protocol. The research by Eric J. Byres et al. [7]provides a deeper insight of attack trees for Modbus protocol. We
discuss the vulnerabilities of Modbus protocol in further sections.
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• Botnets and Search Engines: The Modbus-TCP protocol enabled ethernet communication capability to SCADA
systems. As a result SCADA systems are able to connect to the Internet. Google is the most widely used and
popular search engine. Through crafted Google queries, critical information can be retrieved .This information
might be some accidental information revealed by employees about the company network infrastructure or critical
information. This technique is referred to as Google Dorks. Trend Micro, a security software company provides an
overview of how Google Dorks revealed critical information of ICS systems[63].

Search engines like Shodan which is acclaimed to be the scariest search engine [19]on the Internet expose vul-
nerable devices that are connected to the Internet. Shodan is specialised in indexing the headers in contrary to
the other search engines that match the content of the page. Shodan database is like a goldmine for attackers
which provides enough information like the services, protocol information, Internet Protocol (IP) subnets and also
location of the systems. Roland et al. [3] provide an evaluation of Shodan’s ability to identify Internet-facing ICS
devices.

Bots constantly probe the Internet for vulnerable devices. The information retrieved by bots are sold in the black
market. These prove to be very effective bots with fewer false positives. Botnets [21], a networked collection
of bots can be rented specifically to perform such activities. Botnets also act as strong probing tools to identify
vulnerable SCADA devices connected to the Internet.

• Espionage and Cyber Exploitation: Amidst adversaries, there are also espionage planned by governments to
keep track of developments on developed countries. This motivation vary from simple curiosity to national level
attacks. An example would be of the Stuxnet worm which was discovered to be developed by America and Israel
together and was deployed in a nuclear enrichment facility in Iran. The actual motive is unclear but by the aspects
it may look a cyber espionage designed by one of the nations. It is very important to note that malware like Stuxnet
remained undetected over a long duration and was capable enough to create a environment hazard. Hence, these
kind of threats cannot be ignored and rather must be focused in order to ensure better security.

In addition Igure et al.[22] specify three challenges that must be focused to secure SCADA networks. The first challenge
is to improve the access controls to the SCADA networks. An access control solution will ensure restricted access for an
attacker to enter into the SCADA network. The second challenge is to improvise the security in the SCADA intranet and
to develop efficient security-monitoring tools. The third challenge involves improvising the overall management of the
devices in the SCADA network by identifying loopholes and vulnerabilities. These security mechanisms ensure better
safety in the SCADA network. The monitoring tools like IDS identify malicious packets and also monitor the network for
suspicious activity.

The above specified threat areas provide an insight into the security perspective of SCADA systems. Further as specified,
we discuss the Modbus protocol which forms the backbone of SCADA systems and its security aspects.

2.2 Modbus Protocol

Modbus denoted by Internet Engineering Task Force (IETF) Request For Comments (RFC) 2026 is a serial communication
protocol. It was first published by Modicon for communication in its PLCs. Modbus is now a standard that connects
industrial devices together. The basic configuration involves connecting a SCADA supervisory control system to a PLC or
RTU. The data types are derived from its use in production devices where a single-bit physical output is called a coil,
and a single-bit input is discrete input or a contact. The device requesting the information is called the Modbus Master
and the devices rendering the data are Modbus Slaves. In a standard Modbus network, there is one Master and up to
247 Slaves, where each Slave device has a unique address from 1 to 247. The Master can also write data to the Slaves.
Modbus TCP/IP specification was introduced to Modbus to integrate corporate intranet with PLC systems. This made the
network better manageable, scalable and also cost-effective. Modbus TCP/IP offers many advantages:

• Simplicity: The Transmission Control Protocol (TCP) is wrapped with the Modbus instruction set. The setup
involves simple driver initialization at end devices for communication. Low development cost, hardware and
compatibility with different Operating System (OS)s makes it simple.

• Standard Ethernet: Ethernet ingrates easily into simple chipsets and boards. The cost of implementing Ethernet
to Modbus is low and also provides ample resources as there are many developers working on optimizing the
technology. Ethernet port 502 is used by the Modbus TCP/IP protocol.

• Open: The Modbus protocol has been open source since 2004 and has a dedicated organization working towards
development,optimization and maintenance.
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• Compatibility: Modbus provides interoperability among various vendors and also compatibility with devices of
other manufacturers.

Modbus TCP/IP is an Internet protocol. This makes the devices open to the Internet. This was a particular feature that
was incorporated to facilitate better control and making device maintenance through remote systems over the Internet.
Modbus is an industrial networks protocol. Modbus TCP/IP helps in better management of distributed ICS. It is also
necessary to understand the security aspects of Modbus as SCADA systems rely on it for communication between field
devices. The underlying security issues of Modbus are discussed below:

• Lack of Confidentiality: The Modbus traffic is transmitted in plain text and does not involve any encryption.
This makes man-in-the-middle attacks easily possible. The traffic can be viewed using simple sniffing and traffic
monitoring tools.

• Lack of Integrity: There are no integrity checks build into the Modbus application and as a result it relies on lower
level layers to preserve integrity.

• Lack of Authentication: There is no authentication at any level of the Modbus protocol, with the exception of
some commands that explicitly introduce an authentication mechanism. It is observed from vulnerability analysis
that this authentication mechanism is hard-coded and can be easily retrieved by simple packet forging techniques.

• Simplistic Framing: The Modbus-TCP frames are carried over established TCP connections. Although TCP is a
reliable protocol for data transmission, the drawback of not preserving record boundaries for the Modbus protocol,
makes it easy to inject arbitrary frames. This provides an opportunity for man in the middle attacks.

• Lack of Session Structure: Modbus-TCP has short span sessions like SNMP and HTTP protocols. The master host
initiates a request to the slaves which results in a single action. The lack of authentication and poor TCP Initial
Sequence Number (ISN) generation in embedded system frameworks, enables attackers to inject packets without
caring for existing sessions.

2.3 S7 Protocol

The SCADA systems were developed basically for simplified serial communication considering that the devices operating
on it are legitimate and are programmed to perform the logic specified. Thus, there is no actual security measure to
enforce secure communication. There is no authentication check to verify if the data received is from a valid source.
Moreover, all the data is in plaintext making it possible for any machine in the network to read all the intercepted data.

The Siemens S7 protocol is widely deployed in SCADA networks in the Siemens S7 PLCs, which are the leading
controllers used in ICS environments. The S7 protocol structure is complex when compared to the Modbus protocol as
it allows parallel access to multiple variables of different data datatypes. Related information regarding the protocol
structure of Siemens S7 protocol is hard to find as it is a proprietary protocol designed by Siemens for communication
between its PLCs. However, we try to fetch as much information regarding this protocol by the traffic traces found on the
Internet 1 and some related information.[25]

The Siemens Simatic S7 product line was introduced in 1995 for models S7-200, s7-300 and S7-400 and later for
models S7-1200, S7-1500. The Step 7 software is responsible for the HMI of these PLCs. TCP/IP based connectivity
for the protocol is provided by the Siemens Ethernet Driver. However, connectivity can also be achieved through third
party drivers. The protocol communicates over TCP port 102 and interacts over the Connection Oriented Transport
Protocol (COTP) and TPKT[40]. These protocols add their own headers in the TCP segment and thereby encapsulate the
S7 packet within the COTP packet.

S7 provides a common communication interface where the device can choose to be clients, master or peers. There are
two implemented versions of the S7 protocol. Simatic S7 PLCs implement the S7 implmentation and the later devices
implement the 0x32 variant. A newer variant 0x72 introduces some security features.

The maximum length of a S7 Protocol Data Unit (PDU) lies between 112 to 960 bytes. The packet is divided into three
parts. The first part is a fixed header which includes the COTP, TPKT and TCP header. The second part is the parameter
that indicates the PLCs variables that are accessed and lastly the data part which includes the data to be written.

1 https://wiki.wireshark.org/S7comm
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The S7 protocol does not provide security features similar to Modbus. The protocol was designed to establish com-
munication between Siemens Simatic PLCs. The protocol is also not available as open source for a detailed study. The
packets sent through ISO TSAP [44] are in plaintext. These packets can be easily forged by capturing them and modi-
fying it to exploit the PLCs. Thus the attacker can intercept any packet and modify it to issue commands like powering
off the CPU and changing the ladder logic of the PLC. This also enables an attacker to secretly place a code which acts
as a backdoor that helps is gaining remote access to the PLC directly. A man-in-the-middle attack is also possible by
intercepting the packets that flow from the software to the PLC. Dillon Beresford in his paper [2] shows various ways
a Siemens Simatic S7 PLC communicating through a S7 protocol can be compromised. In his report, he elaborates the
vulnerabilities of Siemens S7 PLCs and simplistic tools to exploit them. The five attacks portrayed are:

1. The TCP Replay attack over the ISO TSAP

2. Bypassing the basic authentication of S7 protocol

3. Powering the CPU on and off of the PLCs.

4. Read and write of the memory registers.

5. Gaining shell access on the PLC

The exploit is performed using penetration testing tools like Metasploit [35] and Nmap [33] that help in providing
pre-defined modules for the attack. Listing 5 shows the Modbus discovery script for the detection of the Modbus service
status on the target system. HosTaGe ICS received many attacks which were based on this script. Listing 6 shows the
Metasploit script for detecting the Modbus service on the target system. Listing 7 shows the Metasploit script that can be
used to fetch the values stored in Modbus registers. The script can also be used to push values into the Modbus registers
and coils. We also leverage the capability of these tools to study the attack and probing strategies to model out attack
detection vectors.

2.4 Siemens Simatic Series

The Siemens S7 200 is a micro-programmable logic controller which can control a wide variety of devices to support
various automation needs. The S7-200 features monitoring, inputting values and outputs as validated by the logical
program, which can include Boolean logic, counting, process timing, complex mathematical operations, and communi-
cations with other intelligent devices. It can control and communicate with devices like automatic pressure controllers,
centrifuge pumps and water cooling systems. The STEP 7 programming package provides a user-friendly application
programming interface to develop, edit, and monitor the logic needed to control the application that monitor devices.
The Siemens Simatic S7 PLC’s use PROFINET which is based on Ethernet for communication. There are over 3 million
PROFINET devices deployed worldwide.

Siemens S7 200 PLCs boasts of a compact design, powerful performance, optimum modularity and open communi-
cations. This Micro PLC has been in successful use in millions of applications around the world,in both standalone and
networked solutions.

This PLC uses communication protocols such as PROFINET, an advanced version of Modbus communication protocol.
This protocol is also based on Ethernet. It also supports TELNET, Hyper Text Transfer Protocol (HTTP), File Transfer
Protocol (FTP), Simple Network Management Protocol (SNMP), Simple Mail Transfer Protocol (SMTP), Modbus and S7
protocols. Though this PLC is designed to be used to control critical systems, security was not a part of its design. The
above mentioned protocols were not customized to facilitate secure communication. The standards were defined to create
an interconnected environment between industrial automation devices and common networking protocols.Security was
either ignored or rather was thought to be expensive on these devices. This makes it an easier target for attackers.

The Simatic S7 PLC is also subjected to various vulnerabilities and attacks including the Stuxnet as discussed earlier.
We simulate the Siemens Simatic S7 200 PLC as a target system in our honeypot.

2.5 Honeypots

A honeypot is a decoy server or a system in a network which is closely monitored for adversaries. It is also defined as:
A honeypot [48] is an information system resource whose value lies in unauthorized or illicit use of that resource. They are
mostly deployed inside firewalls, but they could be deployed in any part of the network. It is designed to be a system
with vulnerabilities and services that are offered by a real target system. Any attempt to connect to these systems could
be considered as an attack. All the activities are logged and further traced. The general idea is that once an adversary
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detects a vulnerable system and tries to attack it, he would come back with more sophisticated attacks. The initial part of
discovery and knowing the general services and loopholes is called system social engineering. Honeypots provide active
monitoring components that wait for attacks and respond to the attacks by luring the attacker to pursue more. There are

certain main functionalities that the honeypots must possess in order to perform their main functionality.

1. Honeypots must simulate the system that they are intend to focus on. This gives the attacker a feeling of approach-
ing a real system. The honeypot may simulate the complete functionality of the system or just the services offered
by the system.

2. A proper response mechanism which keeps the attacker engaged to the honeypot. This facilitates better logging of
the attack and also provides more data to analyze the attacks.

3. It mainly has three perspectives. First, an attacker perspective, by posing as a vulnerable system; second, an
administrator who can identify and log the attacks made by the attacker and third, being able to present and
analyze the attacks logged by the administrator.

4. Honeypots must not induce additional load on the infrastructure. Honeypots must be designed to be lightweight
and having no influence on the production systems.

5. Honeypots are basically exposed to exploits, threats and malware. It is very important to see that this data is not
leaked through the network which can later infect other systems in the network.

6. Based on the previous condition, honeypots must be robust to withstand the attacks and exploits and not fail.

It is clear that honeypots are valued because of the interaction mechanism that they provide for any communication
request. They can be used to study and gather exploits, malware and threats in an early attack phase. There are many
advantages that one could consider for using honeypots as an additional security monitor. There are various advantages
of honeypots:

• Effective Data Sets: Honeypots collect data only when there is a communication requested with it. The data
collected at honeypots may not be immense but is good enough to analyze and detect attacks. The logs provide
information about the attacker IP, time of attack and protocol used to carry out the attack. This ensures lesser
false positives.

• Reduced False Positives: Among other security approaches like IDS and firewalls, false positives are quite com-
mon. The biggest challenge is to reduce false positives. Honeypots could be designed to reduce false positives.
Any communication with the honeypot is unauthorized. This makes honeypots efficient in detecting attacks.

• Catching False Negatives: Honeypots have advantages over signature based detection systems. Signature based
systems do not categorize unknown attacks. They rely on a signature system to be updated on their local database
to identify and detect unknown attacks. The probability of a detecting a new exploit is low. Honeypots detect all
attacks irrespective of their signatures, thereby increasing the possibility of detecting new attacks.

• Encrypted Communication: The current standards in Transport layer includes using encrypted Transport Layer
Security (TLS) communication between nodes. Some attacks fail to detect because of the encrypted data and
communication. All enterprise networks employ secure protocols like Secure Shell (SSH),Internet Protocol layer
security (IPSec), Secure Hypertext Transfer Protocol (HTTPS), TLS in their infrastructure. This may cause prob-
lems in detecting exploits and analyzing the attacks later. Honeypots solve this issue as they are end points in the
communication. The hosts directly interact with the node and hence all the traffic and data can be decrypted and
analyzed later.

• Compatibility to new architecture: Technology evolves every moment. It is very essential to consider future
compatibility with newer standards and technology. Most of modern day IDS or firewalls are not compatible with
Internet Protocol Version 6 (IPv6) which promises to be the next standard on Internet addressing. Honeypots can
be made compatible to newer standards and technology as they are not mediators or devices but act as end points.
However, devices could be simulated by honeypots.

• Flexibility: Honeypots can be deployed locally or open to the external network. Honeypots could be deployed on
any environments based on the requirements such as specific servers, host systems or protocol level emulation. It
could be used to simulate any software, hardware, servers, workstations and devices.
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• Minimal Resource Consumption: Honeypots can run on low resource machines as they are just simulations and
are may not depict full functionality of the system simulated. Honeypots today can run on smartphones as they
possess the required resources which are good enough to run a honeypot.

2.6 Related Work

There has been extensive research going on in the field of honeypots and honeypot-based Signature Generation. We also
discuss multistage attacks, an attack strategy employed by attackers towards attacking multiple protocols. Multistage
attacks are effective in obtaining more vulnerabilities of the system at the protocol level. Detecting these attacks is
crucial as it forms a basis for analyzing strategic attacks. In the following sections we discuss related work in these areas.

2.6.1 Types of honeypots

Honeypots can be classified into two types based on the attacker ability to interact with the application or services. They
can be categorized to high-interaction honeypots and low-interaction honeypots. This classification is mainly based on
the honeypot’s interaction with the attackers. High interaction honeypots typically composed of the actual device, its
operating system and all the applications that run on that device. In short, the exact machine is used as a honeypot
with all its services. This provides better interaction as we are using the device itself as a honeypot. There are also
better chances that based on the vulnerability known, all the exploits work on the device. The main advantage of such
honeypots is that it is the machine itself being exposed and has greater chances of attracting attackers. The disadvantage
would be that if the honeypot is completely compromised, then it has to be rebuilt in order to log other attacks. The
validity of such honeypots is not guaranteed.

A low interaction honeypot on the other hand is a software based or simulation based honeypot approach. The
system to be subjected to an attack is simulated by the honeypot along with its main services. The honeypot can run
on any system, for example it can run on a Linux machine and simulate a honeypot for a Windows Internet Information
Server (IIS) server. It can simulate or mimic the network stack and the operating system of the target host. All connections
and communication with this device is logged. The advantage of low interaction honeypots is that they are completely
flexible and easy to maintain. Low interaction honeypots are also likely not to get compromised as they just mimic the
services or in short the basic communication mechanism. It is on the researcher to design these honeypots accurately to
get productive results.

2.6.2 Honeynets

Honeynets [20] are a networked collection of honeypots that look like common network services and servers. They
provide an overview of the simulation of server and network components. This overview provides better modeling
of the honeypot and the services to be simulated. The simulation could be a collection of honeypots depicting as a
Domain Controller, web server, application server, file server and so on which provide a facade of a enterprise network.
Honeynets usually consist of high -interaction honeypots, low - interaction honeypots, or a combination of both. Using
high interaction honeypots only for this approach would be more expensive. Honeynets are placed behind a Honeywall ,
which acts as a bridge to the honeynet. It includes network monitoring, packet capture, and IDS capabilities. Honeynets
provide an insight into design of low interaction honeypots along with other devices in the network like NIDS.

Honeynets require complicated setup and resources to deploy them to the network. It also involves complex configu-
rations as it pertains to simulation of many target hosts through honeypots and a separate logging mechanism. However,
Honeynets provide an idea of simulating the infrastructure and also providing a framework for further analysis. We look
forward to implement a similar framework for the analysis of malicious packets in our honeypot.

2.6.3 Mobile honeypots

Smart phones have huge computing capability to host resource intense applications. The phones also have efficiently built
software kernels that are capable of processing huge data. We are also able to stay online every moment and to connect
to various network infrastructures. We plan to leverage the capabilities of a smartphone to deploy our honeypot.In this
section we discuss mobile honeypots that relates to our idea of designing a mobile honeypot for detecting ICS specific
attacks.
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The power of mobility, computing resources, usability and flexibility make Mobile devices a good platform to host low
interaction honeypots. Some researchers believe that mobile honeypots are still not well defined and could be used to
define either a probe deployed on a mobile device or on a mobile operating system. It can also be defined for a system
that is controlled in the network of mobile devices [61].

Early research on mobile honeypots focused only on Bluetooth communications[5,17]. The continuous advances in
the field of smartphone technology has enabled better opportunities towards honeypot research on smart phones.

There has been existing work that focused on detection of mobile specific malware. The first to discuss the idea of
a honeypot for smartphones were Mulliner et al., by providing the initial ideas, challenges and an architecture for their
proposed system[37]. Nomadic Honeypots[32] concentrates on mobile specific malware and also trades off with a lot of
personal information.

• HoneyDroid HoneyDroid [37] is a smartphone honeypot for Android operating system which claims to be the first
ever honeypot in the mobile honeypots category which makes use of smart phone hardware to host the honeypot.It
is built on a Linux micro-kernel and is customized to impose restrictions on the Android operating system for
monitoring its activities. The architecture is comprised of an event monitor, to monitor active connection requests
and also system calls in the kernel level; filters to mitigate any attempts of malware trying to affect the system and
a log software to log all the activities.

This honeypot is also focused on detecting attacks from apps installed in the device which try to infiltrate the
kernel for gaining unauthorized access. The system involves virtualization which enables simulation of various
services. This could also result in an overhead, hereby causing a signature which can be detected by attackers and
malware. However, the direction of HoneyDroid was to introduce the concept of mobile honeypots.

• Cellpot: Cellpot [31] concentrates on detection and defense of attacks in the cellular network. It comprises of a
collection of honeypots, or honeynets that are deployed on mobile phones. Cellpot consists of applications like
SMS spam prevention, mobile phone theft and malware protection. The honeypot mainly is concentrated towards
Small Cells[31], wireless infrastructure deployed in customers site and operated in licensed bands. The main
use of Small cells is to support the need of coverage and capacity. These points are a good place to deploy the
honeypots to detect malware and other intrusion attacks.

Denial Of Service is the most common category of attack in the area of cellular networks, and with the help of few
devices,this attack can be executed successfully. Introducing a honeypot approach for detecting such attacks at
small cells is a feasible solution.The concept of Cellpot is to detect, collect intelligence and mitigate threats based
on the cellular network that are operated on the base stations. Further, it has the ability to deploy countermeasures
against detected threats, and enables a wide area of applications. It provides a good platform for mobile network
operators to easily deploy the application and run additional applications to reduce signaling overhead.

• Nomadic Honeypots:Nomadic Honeypots [32] propose a concept that provides a framework to enable mobile
network providers to collect threat intelligence data on smartphones. It was the first proposed honeypot on a
smartphone platform. It places the smart phone user as a centric role and requires the device to be used in a
normal way. The honeypot is deployed on the smartphone in a separate partition which serves the purposes of
providing all communication of the mobile OS, hosting infrastructure for data collection, facilities for snapshots
and logging and lastly provides a secure backchannel for the operator. The main partition hosts the mobile OS and
a strict line of isolation is followed between the partitions to ensure the robustness of the honeypot infrastructure.

The operator can further use the collected data to gain intelligence on mobile threats. Snapshots of the mobile OS
file system to do an offline forensic analysis of attacks could be easily provided which can gain an thorough insight
on the nature of the threats and use the findings to protect his customers.

• HosTaGe:[56],[57] is an Android application which acts as a Mobile honeypot, determined to detect malicious
networks and probe for attacks. It is user centric and aims at creating security awareness to its users. The
results obtained in this process are synchronized with a global repository and also can be shared locally through
bluetooth. The current version has capabilities of emulating as Windows, Unix, Apache Server, Structured Query
Language (SQL) and Paranoid host. Attacks through HTTP, Server Message Block (SMB), SSH, HTTPS, Telnet and
FTP can be identified. HosTaGe is one of the mobile honeypot capable of simulating different targets on a mobile
platform.
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2.6.4 SCADA honeypots

Analysing the security concerns of ICS SCADA systems and the advantages of honeypots, a solution could be implemented
to combine the needs and features. SCADA honeypots could be deployed in ICS Networks for monitoring and analysis.
They act as an additional line of defense providing warnings and notifications for attacks. Designing a SCADA honeypot
involves studying the architecture of the SCADA systems and the components, protocols involved in communication
and processing of data. Further, as discussed before, SCADA networks comprise of hardware devices like PLCs and RTUs
which play a very critical role in processing and communication of data. SCADA systems rely on PLCs for data processing.
If PLCs are targeted by attackers to compromise their working, it could bring down the entire plant, hereby resulting in
a huge catastrophe.

Modern day PLCs offer TCP/IP communication which can be used to control and manage the data flow between
other PLCs and control servers. On investigating attacks that have occurred in the past, Stuxnet a malware, was found
to be injected in a Nuclear Enrichment Facility in Iran in the year 2009. Stuxnet was found to be injected into the
internal network using a USB drive to one of the host control systems. The malware spread from that system to other
systems through intranet and remained hidden from operators. Stuxnet was able to interfere with the working of a PLC
that controlled centrifuges and managed to compromise the conditions on which the PLC depends. It was only by the
observation of an operator that the PLC was causing the centrifuges to run more fast than usual was detected. But nobody
could determine what caused the centrifuges to run abnormally.

Detecting such kinds of attacks is not only complex but also very necessary. Such kind of attacks cannot be detected
neither by signature based systems, nor by firewalls. Some organizations took initiative to design honeypots for SCADA
systems. They are elaborated as follows:

• SCADA Honeynet SCADA Honeynet Project[16] is a project aimed at building honeypots for industrial networks.
It was the first of its type. SCADA Honeynet was designed to simulate the PLCs and detect attacks performed on
them.The short-term goal of the project was to determine the feasibility of building a software-based framework
to simulate a variety of industrial networks such as SCADA, DCS, and PLC architectures. It provided scriptable
industrial protocol simulators to test actual protocol implementation. The design was an integration of stack
level, protocol level, application level and hardware level. The honeypot was carefully designed to cover all the
services offered by the SCADA systems, including the networking devices like routers and a direct serial device.
The setup of the honeypot is complex as it involves the configuration of two virtual machines as per the network
infrastructure.

• Trend Micro SCADA honeypot Trend Micro a global security software company conducted an experiment2 to
detect attacks on SCADA by setting up 12 honeypots in 8 countries. The honeypots obfuscated a public municipal
water control system based on SCADA that was connected to the Internet. Attacks were basically focused on
fondling with the pump system. The objective of this experiment was to analyze the attacks of the Internet-facing
ICS SCADA devices and the reason behind them. Further, the research aimed at identifying if the attacks performed
on these systems were intentional by specific interests.

The honeypot architecture design used, is a combination of high-interaction and device based production hon-
eypots. A total of three honeypots were deployed to ensure as much of the target surface as possible. All three
honeypots were made public, facing the Internet. The honeypots were assigned different public IP addresses of
different subnets distributed in the United States. The honeypot provided a full simulation of the pumps depicting
a real scenario. The design used high interaction honeypots that were deployed on server instances and the real
hardware was used to also simulate the environment.

• Digital Bond A security research and consulting firm created a honeypot system that comprised of two virtual
machines. The honeypots are open source. One of the virtual machine acts as a PLC honeypot and the other is a
monitoring engine that logs all the traffic information. This system is also called a Honeywall. Honeywalls can also
be used to monitor high interaction PLC honeypots. The Honeywall comprises of Snort IDS and signatures with
respect to PLC. The services that are simulated are FTP, TELNET, HTTP, SNMP and Modbus TCP. This honeypot
focused on utilizing the signature set of IDS to monitor the network.IDS.

• Conpot Conpot3 is a low interactive server side ICS honeypot designed to be easy for deployment, modification
and extension. It provides a range of common industrial control protocols capable of emulating complex infras-
tructures to convince an adversary .To improve the deceptive capabilities it also provides the possibility to host

2 http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-whos-really-attacking-your-ics-equipment.pdf
3 http://conpot.org/
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a customized HMI to increase the honeypots attack surface. The default configuration of Conpot simulates the
Siemens Simatic S7-200 PLC with the Modbus, S7 and HTTP protocol simulation. Conpot provides ideal SCADA
honeypot capabilities. The logging mechanism observed does not provide enough information for the attack
analysis.

The research works discussed involve complex setup and simulation of a specific target system. They also need more
resources and computing power to host the honeypots. The existing research work on mobile honeypots concentrate on
designing a honeypot to detect mobile phone specific attacks. We aim to create a honeypot that is less complex, provides
greater analytical capabilities, high detection ability and flexibility.

2.6.5 Multistage Attacks

In multiple networks there occurs a large number of stealthy scans, worms outbreaks and distributed denial-of-service
attacks simultaneously. These attacks are very difficult to identify using IDS which monitors only some part of the
Internet. Zhou et al. present survey[69] of co ordinated attacks and collaborative intrusion detection. Such attacks can
be detected using Collaborative Intrusion Detection System (CIDS). This part of the report summarizes the detection of
attacks using CIDSs. However there are two main challenges to be faced in CIDS research, which includes its architecture
and alert correlation algorithms.

Attackers have recently been able to perform complicated attacks by targeting or leveraging large number of hosts
that are distributed over large geographic area. For instance attackers can scan large number of hosts simultaneously to
look into vulnerable systems or softwares, which are stealthy scans. Also they can use worms, which are self replicating
computer programs to spread and multiply malicious code on many vulnerable systems quickly. Distributed denial of
service(Distributed Denial of Service (DDOS)) can also be performed by overloading the target link by thousands of
compromised hosts to disrupt and deny its service. These different ways of attacks could be integrated by an attacker
which can result in a significant threat to the Internet security.

There exists four groups of alert correlation techniques used by CIDSs [69]. They are similarity based, attack scenario
based, multi-stage and filter based. The similarity based technique correlates alerts based on the similarity between the
alert attributes. The similarity between the alerts is calculated using a function, the resulting score tells if the alerts will
be correlated or not. The attack scenario based technique correlates the approach based on predefined attack scenarios.
The attack scenarios for this technique can be specified by the user or it can be trained by the datasets. The multistage
technique is based on correlating the attacks based on the causality of earlier or later alerts. In this approach , there could
be reconstruction of some of the complex attack scenarios by linking individual steps which are a part of same attack. In
filter based technique, the alerts are prioritized based on the criticality of the protected system.

The main focus is made on multi-stage approaches in this thesis. We focus on the approach where there are possible
logical links between the post-condition of an attack A and pre-condition of attack B. Therefore, executing a given attack
can contribute to executing another attack. Whenever an alert is raised, it will be compared with the earlier alerts to
check if correlation conditions are satisfied or not, which results in set of correlated pairs of alerts. These pairs will be
verified if they belong to existing attack scenarios. If the scenario is verified then it is joined with the earlier existing
scenario, or else a new scenario will be started. We model this correlation approach formally through Extended Finite
State Machine (EFSM)s and discuss it further in section 3.4.

In this approach of multistage , the attacks are correlated based on the causal relationship between alerts, and most
of them can detect unknown attack scenarios. This approach mainly focus on correlated alerts and discards others
that cannot be correlated. However, the reason for this discarding of the alerts that are not correlated is not analyzed
rigorously and the accuracy of the correlation is affected by the false alarms generated by individual IDSs. Also, the
complete library of attack steps is expensive as there are large number of attack types. A language called LAMBDA is
used to correlate the alert from different IDSs and CIDS. The attack is described by four main components:

1. Pre-condition and post-condition: The condition of the target to be satisfied for performing an attack, and the
impact on the target system after the attack is successful.

2. Scenario: combination of attack events or steps for completing an attack.

3. Detection: steps for attack detection. This events sets may be different from scenario as some attack steps cannot
be observed in IDSs.

4. Verification: some conditions on target system in order to check an attack is succeeded, like vulnerabilities existing
in the system.
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2.6.6 Signature Generation

Signature-based Intrusion Detection Systems rely on a signature database for the detection of malicious payloads. This
signature database has to be updated with signatures for newer malware. Some attacks, as discussed in the previous
section are target specific, for example specific to an organization. Detection of such attacks is very complex. Major IDS
fail to detect such attacks due to the absence of signatures to detect such kind of attacks. Honeypots act as active entities
that capture such attacks with no impact to production systems. The attacks can be analyzed and studied offline to
determine the its complexity and impact towards internal systems. The attack information captured by honeypots could
be used to generate signatures that IDS depend on to detect attacks. This is possible by either deploying a honeypot is
the same network as in the IDS, or could be a collaborated honeypot that is capable of generating signatures that popular
IDS can integrate.

A similar approach was proposed with Honeycomb[27] . It focuses on a honeypot system that automates generation
of attack signatures for network intrusion detection system. The system uses this pattern matching technique and checks
protocol conformance on various levels in protocol hierarchy to the captured network traffic in a honeypot system.The
attack signatures are required to describe the characteristic elements of attacks. The system explained in this part of the
report supports signatures for Bro and Snort NIDSs.

The system makes use of Honeycomb, a system that generates signature for malicious attacks on network traffic
automatically. The honeypot honeyd[42] is extended by a subsystem that checks the traffic inside the honeypot at
different levels in protocol hierarachy. Honeypots mainly monitor and log the activities of entities that attack or probe
the system. The paper describes the extension of honeyd, a low level interaction open-source honeypot. honeyd simulates
the hosts with individual networking personalities. It intercepts on the nonexistant hosts and use the simulated systems
to respond to this traffic.

The idea is to keep the system free of any particular knowledge related to certain application layer protocols. An
overview of the Signature Generation Algorithm is shown in Figure 4. Every received packets results in initiating the
same sequence of activities in Honeycomb. These activities involves:

1. If any connection state is existing for new packet, that state is updated, or else a new state is created.

2. If the packet is outbound, processing is stopped in this state.

3. The protocol analysis is performed by Honeycomb at network and transport layer.

4. For every stored connection, header is compared to detect the matching IP networks, initial TCP sequence numbers,
etc. If the connections have the same destination port, Honeycomb does a pattern detection on the exchanged
messages.

5. If there are no useful signatures created, processing stops. Or else the signature is used to augment the signature
pool.

HoneyAnalyzer [51] is an analysis tool that extracts signatures of intrusion detection patterns using honeypots. The
basic idea is to analyze honeyd c.f [41] logs stored in an Relational Database Management Systems (RDBMS) using a web
interface. The signature extraction consists of three parts.

1. Data Capture: A logging component which consists of honeyd and tcpdump [23] for collecting data.

2. Data Analysis: Tool for analysis and extraction which involves analyzing data of signature extraction mechanism
to identify specific attack signatures.

3. Signature Extraction: Extract refined attack signatures.

The data capture component logs all the communication of an attacker through a honeypot. The honeyd honeypot
has a log mechanism for reporting the connections that are attempted and completed. To analyze the attacks completely
we need the payload information of the connections established or attempted. tcpdump is responsible for this activity. It
captures the packets with their payload. The data analysis component is used to extract specific attack signatures. This
component has a web interface that provides a graphical output which provides the administrator details about the most
attacked port and the respective IP address. The strategy for extracting specific attack signature in honey-analyzer is as
explained below:
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1. Simulating the network using honeyd.

2. Start traffic analysis through tcpdump

3. The attacks received on the honeyd log file is parsed and pushed into the database using a script.

4. The web interface provides an overview of the attack patterns and the data for analysis. The web interface provides
packet information, realtime network traffic, attack ports and connections per second.

This approach relies on the experience of a user to determine the malicious traffic and does not generate signatures.
However, it identifies and extracts attack specific signature data. This data has to be composed into meaningful signatures
that can be deployed on IDS. Honey-analyzer proposes the idea of using the attack related data that is captured on
honeypots to create signatures.

In this thesis, we aim to create ICS attack specific signatures for IDS. The related work forms an important basis for
our design. We also argue to be the first honeypot to generate signatures for ICS environment.
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Figure 4: Honeycomb Signature Generation Overview.[27]
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2.7 Summary

This section discusses about ICS SCADA. The section also consists of a brief explanation about ICS SCADA components
which include network and control components. It explains the architecture of SCADA and shows the data communica-
tion and its processing on PLCs. We also see security aspect with respect to ICS SCADA and various threats that SCADA
is subjected to. The section also explains about Modbus protocol, its advantages and security issues. We also saw about
honeypots, its main functionalities and its advantages. We provide an overview of the Siemens Simatic series which con-
trols and provides automation needs in ICS infrastructure today. Furthermore, the related work section explains about
different types of honeypots such as Honeynets, mobile honeypots and SCADA honeypots. The chapter also briefs us on
related work on multistage attack and signature generation through honeypots.
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3 Proposed System and System Design

We consider the all of the requirements to design and develop a mobile honeypot system for the detection of ICS specific
attacks. We also propose a honeypot capable of detecting malware and generating signatures for increasing the detection
capability of IDS. In what follows we discuss the proposed system and propose a design for our honeypot.

3.1 Proposed System

In this thesis, a low interaction mobile honeypot mechanism to simulate an industrial PLC will be designed and imple-
mented. The design also aims at detecting attacks and making inferences about the adversaries and attacks. The final
implemented version will be integrated to the HosTaGe app along with advanced mechanisms that HosTaGe already
provides to its users. As the proposed system deals with implementing a low interaction honeypot, the challenge involves
implementing only the essential components or services, that satisfy the discovery and vulnerability to attack them, for
example, the network stack. Along with basic attack detection, the system must also have a short response time, robust
design to withstand the attacks and also maintain a log of the exploit for further analysis and backtracking. An attempt
will be made to detect attacks forged with popular identified worms like Stuxnet. The conclusions on the attacks made
will be pushed on to a central repository where the details of the attack are made public for users worldwide.

The proposed system also aims to identify Multistage attacks and generate signatures for IDS. The attacks containing
malware are formally modeled to analyze their propagation through the network and their dropping mechanism. This
model helps in identification and detection of such malware and also generating respective signatures.There are several
systems that propose the idea of Multistage attacks and their detection.

In the following sections we discuss the design of the proposed HosTaGe ICS mobile honeypot. The discussion involves
the ICS perspective for HosTaGe, the simulated Siemens Simatic S7-200 PLC system , protocols supported by the PLC,
the formal model, detection mechanisms and signature generation mechanisms.

3.2 HosTaGe ICS Perspective

HosTaGe has implemented mechanisms to emulate different kind of hosts like a windows host, linux host, webserver,
FTP server, SSH server and more. The simulation of industrial level SCADA based PLC will be added to the the existing
list of simulated hosts and services. To simulate PLCs it is important to understand their communication and control in-
frastructure. PLCs have network interfaces that support Ethernet, TCP/IP, Modbus[17], DeviceNet[30], ControlNet[30],
Foundation Fieldbus[52]. The manufacturers have their own in built shells to support FTP commands. The commu-
nication capability is realized through the Ethernet module which is deployed on an embedded OS. This OS includes
the network protocol implementation for protocols such as Modbus/TCP. The Telnet and FTP server have the required
information to identify the vendor and the firmware version deployed on the device. The components in the network
stack of the PLCthat have to be simulated are the basic TCP/IP mechanism, Modbus TCP, FTP server, HTTP server and a
Telnetd server. The HTTP server simulates the controlling portal to manage the PLC.

The discovery and identification of the PLC in the network can be through a network nmap scan that reveals infor-
mation about the host name, ports 21, 80 and 502(Modbus) open. The main objective is to detect attacks made using
the protocols offered by the Siemens Simatic S7 200 PLC . A logging mechanism logs the information about the attacker
in pursuit. The architecture of HosTaGe ICS is as shown in Figure 5. A discussion of the components is followed in the
below sections 3.2.1, 3.2.2, 3.2.3, 3.2.4 and 3.2.5.

3.2.1 HosTaGe Core

The HosTaGe Core forms the basic core mechanism of HosTaGe ICS. It is responsible for running the core mechanism and
functionality of HosTaGe. It provides an interface for the activation and deactivation of implemented emulated protocols.
The core interacts directly with the Graphical User Interface (GUI) to provide notifications to the user of the connections
made. The main components or sub modules of HosTaGe Core are Emulator and Connection Guard.

• Emulator The Emulator is responsible for the emulation of protocols in the Protocol Emulation . It is a multi
threaded module which dedicates a thread for every protocol to be emulated and also actively listens to the
incoming malicious traffic for the respective service ports. It calls the Logger module to log all the activities
occurring at that port. The emulated protocol can accept multiple simultaneous connections at the same instance.
A Connection Handler is started for every incoming connection request. Every Connection Handler communicates
with the initiating client, providing a basic protocol interface based on the selected protocol for emulation. The
Port Binder module is responsible for binding the ports .
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Figure 5: HosTaGe ICS Architecture

The emulator provides a selection interface for the user to choose the protocol to be emulated. For the ICS
perspective we provide additional protocols like Modbus, S7, SNMP, SMTP and also a dynamically adapting version
of SMB and HTTP which form a mainstream for attacking in ICS systems.Adding new protocols to the Emulator
module is hassle free.

• Connection Guard A honeypot has to be robust itself to detect malicious attacks and survive them. However, it is
always possible to compromise a system through tailor made strategies. The connection Guard mechanism limits
the number of connections that can be received by HosTaGe ICS. This measure makes sure that our system is safe
under the Denial Of Service attacks. In such cases, the number of connections are limited by the source IP or for
the destination port. The connections are also terminated over a period of time.

3.2.2 Logger

The Logger module is responsible for logging the attack and connection data into the HosTaGe ICS SQLite database.
It also supports export of the logs generated in different formats into the phone memory. The formats include plain
text and in Java Synchronous Object Notation (JSON) for data processing by third party applications. The logs are also
synchronized with the remote repository for global synchronization.

3.2.3 Graphical User Interface

HosTaGe ICS provides a user friendly and an interactive GUI for its users. The Overview shows the current state of
the HosTaGe service with respect to the secure state of the network in which the device is placed. The Overview could
be sleep, scanning- without any attack previously detected on the network, scanning- with an attack previously on the
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Figure 6: HosTaGe ICS Overview

network and on attack detection. This provides an overview of the network health condition for the users. Figure 6
shows the GUI of the Overview screen of HosTaGe.

HosTaGe offers various functional modes through the Profiles module. This module enables the user to select the
Target system type that has to be emulated. Every profile has predefined protocols that have to be emulated which
combine together to form the emulation of a target system. However, users can also select from a list of services that they
want to include in the profile. HosTaGe also provides protocols to be emulated as per users choice. Users can decide upon
the protocols to be emulated. HosTaGe ICS adds Modbus, S7 and SMTP to the list of protocols supported by HosTaGe.
Figure 7 shows the Profile view and Figure 8 shows the Services view of HosTaGe ICS.

Figure 7: HosTaGe ICS Profile View Figure 8: HosTaGe ICS Protocol View

3.2.4 Port Handling

The Android OS has a security policy of allowing only signed applications access to privileged network ports(below
1024). As HosTaGe is a third party application, by default it does not have access to these ports. The policy sounds
fair with respect to the security enforcements but adds additional challenges in the implementation of the protocols for
HosTaGe. ICS specific profiles include emulation of protocols like Modbus, S7, HTTP which fall in the network privilege
ports category. A script was implemented to achieve this challenge in native C and cross compiled for Android OS. This
program binds a port passed to it as a parameter and sends the file descriptor back to the caller through a UNIX domain
socket[56] . The program uses a Java server sockets to create a socket from a file descriptor which ensures connection to
the privilege ports. Some applications already bind to some previlege ports. In this case, HosTaGe notifies user that the
port is bound to some other service.
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However, a root privilege or a rooted Android device is required for the above mentioned program to work. We also
look forward to overcome this situation for the app to work in the future.

3.2.5 HosTaGe Services

HosTaGe relies on services that run in background to achieve its constant attack detection activities. These services ensure
monitoring the network, managing the connections, handling of attacks and notifications to the user through the app
GUI. The HosTaGe app currently has 3 services running and are described as follows:

• HosTage service:The main service that HosTaGe relies on is the HosTaGe Service that controls and co ordinates the
mainstream activities of HosTaGe. It is responsible for managing connections, listening on ports, enabling protocol
services, attack notifications and logging of data. The HosTaGe service is responsible for the basic functionality of
HosTaGe.

• Multistage Attack detection Service The Multistage Attack detection service constantly checks the records
database for any Multistage attacks. The attack records for a pre-defined time period are retrieved and scanned
for Multistage attacks.

• Synchronization Service HosTaGe ICS synchronizes the attack records received with a remote repository period-
ically. This synchronisation is aimed at creation of an updated central repository with blacklisted IPs and payload
information. This information is used by a Collaborative Intrusion detection system for monitoring traffic based
on the blacklisted IPs.

3.3 Protocols

The ICS SCADA systems include the master and slave devices.Our design must be capable of simulating the services of
both the master and slave devices. The Siemens Simatic S7 supports a wide range of protocols which include Mod-
bus/PROFIBUS TCP, HTTP, TELNET, FTP, SNMP, SMTP and S7. Modbus TCP and S7 are the communication protocols
and the rest of the protocols are enabled as added features. Considering the other protocols form an important part of
the security analysis as malware are usually designed keeping the flaws of the network and the software bugs in mind.

• HTTP: HTTP is supported by the majority of PLCs for remote configuration purposes. The HTTP web server in the
PLC enables GET/POST messages for information exchange. This HTTP server is simulated by HosTaGe through a
dynamic HTTP protocol implementation. A default welcome page is displayed when the adversary tries to navigate
to the device’s webpage.

• Telnet: The Telnet protocol allows accessing a basic shell on the devices in which users are able to dump memory,
delete files and execute commands. It provides command and control to the target remote devices. It enables file
system based commands and directory listing. Users or applications can communicate with the PLC for file and
backup operations.

• FTP: FTP provides file transfer and communication between end devices. These are usually files containing sensor
readings and logs.

• SNMP: The Siemens S7 family of PLCs the configuration of client devices through SNMP. This allows to remotely
manage devices on the network.

• SMTP: SMTP is mainly enabled for notification servivce in case of device failure or data inconsistency.

• SMB: Although SMB is not a part of Siemens S7, it is a main component of the Master devices that control the
slave PLCs. The SMB protocol is used to share files in a network of hosts. This protocol is typical on enterprise
intra-networks due to file sharing requirements.

• Modbus/PROFIBUS TCP: Modbus TCP acts as a strong communication mechanism between the slaves and the
master devices. It forms a backbone for industrial systems automation. Modbus has instruction sets for the
interaction of devices. PLCs have registers 1 as memory units. The instruction sets are specified as functions
which denote Read/Write (R/W) operations on the registers of the PLCs The protocol is used for communication
exchange between PLCs and control systems.
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• S7: The S7 protocol is a Siemens proprietary protocol utilized in PLCs of the Siemens S7 family. It is used for
programming the PLCs, communication of data between PLCs, acquisition PLC data from SCADA systems and
for diagnostic purposes. The protocol forms as a base for accessing the registers for R/W operations and also
programming the PLC for user defined tasks.

3.4 Formal Model

The attack strategies employed by attackers can be interpreted as a sequential approach. This interpretation could be
formally represented as a state model. The formal model could be used as a design perspective for the detection of
attacks. Sengar et al. [47] propose the idea of Voice over Internet Protocol (VoIP) intrusion detection system which
is based on an approach of using state machines for the modelling of network protocols and the interaction between
them. Using this idea they propose a VoIP IDS based on the protocol state machines. The idea is that to utilize the state
transitions made in protocol state machines for intrusion detection. A protocol state machine based IDS can be viewed
as a variant of anomaly detection mechanism. Once the protocol state machine is constructed and the relevant attribute
features are identified, the approach not only reduces the number of false alarms but also found to be able to detect
previously occurred and unseen attacks.

A state machine deals with low-level abstraction of protocol. It can express protocol design in terms of desirable or
undesirable protocol states and state transitions. The approach constructs a communicating finite state machine where
the output of one machine is connected to the input of other machine. An extended finite state machine called "Mealy"
finite state machine is used for the approach. The Mealy machine extends with input and output parameters, context
variables, operations and predicates.

We further extend the idea proposed to HosTaGe ICS to detect Multistage and File Injection attacks. We employ the
Mealy state machine model [60] to define the stages of attacks and construct formal state machine diagrams to represent
attack process.

The detection mechanism of HosTaGe ICS is formalized with an EFSM. An EFSM has all the properties of a normal
Finite State Machine (FSM) with an extended design of utilizing if -conditions, instead of only boolean conditions, to
specify how a state transitions to a new state [15]. The formal model of our proposed detection mechanism is given by
Attack Detection EFSM M = (S, s0, I , O, V, P,δ,λ) [13]

Figure 9: EFSM of the attack detection and signature generation mechanism
[13]

and is illustrated in Figure 9. The set of all states are represented with S. The EFSM starts in the Normal Behavior
state, represented by s0. If any protocol communication is detected by the honeypot, the EFSM transitions to the Attack
state. For as long as the same protocol attack is observed, the state remains the same. If a timeout occurs the EFSM
transitions to the Generate Signature state followed by the Issue Alert state. The signature generation is optional and will
capture either single attack or multistage attack types. After an initial attack, observing attacks originating from other
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protocols (but the same host) that have not yet been observed moves the state to the next Multistage Attack Level x, where
x corresponds to the number of different protocols observed after the first one.

The inputs I, outputs O, variables V and predicates P are tightly linked together. State transitions are carried out
wherever specific inputs i ∈ I are received.This transitions may also generate an output o ∈ O. In the Normal Be-
havior, Attack and Multistage Attack Level x states, the supported protocols are used as inputs and outputs. As such,
{Mod bus, S7, SN M P, HT T P, Telnet, SMB, SM T P, HT T PS, SSH, F T P} ∈ I ∈ O for these states. The inputs of I are not
limited, however, to only ports. Special activities of interest on a protocol are also considered inputs. For instance, the
act of requesting a file through the SMB protocol is an input on itself. V is a finite set of variables. These variables are
used to construct a set of predicates P used for determining if a state transitions to another one. Each attack state hold a
boolean variable v ∈ V for each emulated port. If a particular port has been observed in the entire life of the EFSM, the
corresponding variable for that port will be set to true. Besides variables, predicates P consist of the logic operator AND
and the arithmetical operator =.We define the Protocol Connection predicate as the condition where a new protocol is
observed without having observed other protocols yet. The Different Protocol predicate indicates, as the name suggests,
that a new protocol has been observed after having seen at least one other. If any of these predicates is true a state
transition takes place.

The final element of our model is the set of transitions δ(si , i, p) = s j and the outputs λ(si , i, p) = o generated by the
transition itself. The set of transitions specify that whenever state si ∈ S receives the input i and the predicate p ∈ P is
satisfied, the EFSM transitions to state s j and outputs o ∈ O. The outputs are used by the Generate Signature state to
create signatures for misuse analysis.

3.5 Detection Mechanisms

HosTaGe ICS is designed to identify three different class of attacks: Single-Protocol Level Detection (SPLD), Multi-Stage
Level Detection (MSLD) and Payload Level Detection (PLD).

• SPLD: SPLD attacks refer to those that occur on a single-protocol, eg:HTTP connection attempts without observing
other protocols or any extraordinary payload-level information. This is the simplest type of detection which still
contains interesting analysis potential.

• MSLD: MSLD refers to attacks that originate from the same source and attempt to exploit different types of
protocols within a small window of time. These type of attacks are identified by the honeypot with the EFSM
shown in Figure 9. An important factor in MSLD is the time-window (tw) that determines whether an attack
should be mapped as the Single Payload Level Detection (SPLD) or the Multistage Level Detection (MSLD) class.
This means that when the EFSM is on the Attack state and no further activity is detected (for a maximum of tw) a
timeout will occur and the attack will be identified as SPLD. The tw can be adjusted with respect to the monitored
network and its requirements.

• PLD: Payload Level Detection is enabled for the HTTP, SMB and Modbus protocols. These protocols carry critical
payload in the case of ICS environment. There could be malware in the form of executables injected in the payload
which can trick the end systems to execute or process them. Studies show that majority of the malware existing
today spread through HTTP payloads. Payload Level Detection (PLD) extends the applicability of the EFSM with
respect to the inputs I. Referring back to our formal model, the outputs o ∈ O from the Attack and Multistage
Attack Level x states are used in the Generate Signature state to create signatures. Signatures are also EFSMs that
comply with the presented model. As we already mentioned, the input is not limited only to a port or protocol but
also to potentially interesting payload- level information. Figure 10 can be considered as an example of an EFSM
that represents a signatures generated by PLD. This signature identifies Stuxnet attacks from the set of outputs O
obtained from the Attack Detection EFSM shown in Figure 10. The detection of Stuxnet EFSM assumes an initial
Normal Behavior state and transitions to SMB Attack if an SMB protocol is observed. Stuxnet tries to inject an
infected file through SMB. After a file is received, it (or its hash value) is sent to VirusTotal and, if the file is indeed
malicious, the EFSM transitions to the Stuxnet Attack state where its presence can be reported.

3.6 Signature Generation

An Intrusion Detection System relies on its signature set and static response analysis in order to determine malicious
packets and traffic. IDS depending on the signature set are called signature based IDs and the one’s relying on heuristics
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Figure 10: EFSM for PLD in the case of Stuxnet propagation
[13]

are called anomaly based IDS. Signature based IDS monitors the packets and compare them with a database of signatures.
An example for signature based systems could be antivirus systems that detect malware by comparing the files with a
known set of malware signatures. Anomaly based IDS detect intrusions by monitoring the system activity and classifying
it as normal or anomalous. This classification is based on rules or heuristics to determine anything which is different from
normal system behavior.This type of IDS also relies on neural networks and artificial intelligence algorithms to classify
normal traffic.

Majority of Enterprise Networks include IDS on their network and are dependent on them for identifying and detecting
malicious attacks and traffic. It is also true that due lack of expertise or internal constraints, many Enterprise Networks
do not prefer having honeypots as decoys to determine malicious attackers and traffic. One such feature why IDS are
preferred is because of commercial support and maintenance. IDS developers constantly monitor for newer malware and
develop signatures to keep the IDS signature database updated. The administrators have to update the IDS signature
database to defend against newer malware. This update system would fail under some circumstances where the devel-
opers fail to recognize the malware or if its a tailored attack strategy against an organization.Thus we propose a model
of HosTaGe ICS where our honeypot has the feature of generating signatures for an IDS which could be deployed on a
active IDS that monitors the network.

The Signature Generation model of HosTaGe ICS concentrates on utilizing the attack results logged by HosTaGe. The
active attack correlation techniques determine newer attack strategies followed by attacker, help in understanding the
payload of malicious traffic and also instantly generate signatures that can be deployed to an IDS. This model also binds
the usage of both an IDS and a honeypot in a network for gaining stronger security aspects by utilizing the advantages
and features of both an IDS and honeypot.

Figure 11: Network Architecture of IDS and HosTaGe

Figure 11 depicts the suitable network architecture for having both an IDS and HosTaGe. The firewall acts as a first
line of defense allowing only required traffic. The NIDS comes second monitoring every packet for any malicious entries.
HosTaGe can be placed either at the internal network or at the DMZ depending on the required area of interest for
monitoring. It functions well at both areas. Any attacks towards HosTaGe is logged. This logged data can be analyzed
further and if found malicious, a signature file for matching the content of the payload can be generated. This signature
can be mounted on the Intrusion Detection System for monitoring the packets along with other attack signatures.
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3.7 SCADA PLC Profiles

ICS SCADA devices can be classified into master and slave device types based on the interaction and functionality. The
master system is responsible for controlling the slaves and send them appropriate commands for a task. These systems
are usually control servers or host systems connected to PLCs or slaves, that receive critical information and updates
from the sensors placed on devices and PLCs. The other most important systems are the automation PLCs. Slave devices
interact with many other devices and collectively process information to perform a task assigned by the master. When a
Modbus master wants information from a device, it sends a message that contains the device address, the data it needs
and the checksum for integrity. The network is typically like a hub structure. The data is broadcast in the network and
the device from which the information was requested only responds. The slave devices cannot initiate communication
and only can respond to a request made from the master.

Figure 12: SCADA Master and Slave profile

Modbus/TCP allows multiple masters to poll the same device in parallel. A unit can be either a master or a slave but
not both.

The Figure 12 represents devices connected on the industrial LAN and the Modbus master-slave communication. The
master devices poll the slave devices and request information. The information is processed and sent back to the master.
There is also possibility that a PLC acting as a master polls its data to the other devices like HMI and other PLCs in the
network.

In the past there have been attacks both internal and external on SCADA systems. Popular attacks using Stuxnet, were
carried out internally by deploying the malware on a host computer with the help of a USB drive. However, the malware
made use of the vulnerabilities of the host system to replicate and spread through the network. Detecting such kind of
attacks are very important and cannot be ignored. These attacks are more dangerous than the external attacks as there
are various mechanisms to detect attacks from external sites. Internal attacks have proved to be more catastrophic. We
also concentrate on the slave profile. This is required as the slave devices today have Ethernet communication and can
communicate with the Internet. Due to some network configuration loop holes, the device may be accessed due to the
Internet or the device itself may be configured to be accessed through the Internet by the administrator. For example,
the slave devices also run HTTP servers which can display the sensor information in the form of a webpage. This device
may be configured to be accessed through the Internet to check and monitor the sensor readings from a external system.
There is no doubt about the possibilities of attack of such systems from the Internet. Thus we concentrate on simulating
both the master profile, to check internal attacks and also slave profile to check external attacks.

3.8 Malware Analysis

Malware have been a huge threat to ICS systems. The anomaly is that in ICS environments malware is most likely to
originate from internal hosts rather than from external networks. Considering popular malware for ICSlike Stuxnet,
which originates from a host in the internal network and then propagates to a control host, it is very much necessary to
consider attacks from internal networks. Stuxnet has still been a threat to ICS systems and its detection is imperative as it
is known to cause huge hazardous impact. Figure 13 shows the overview number of Stuxnet attacks detected in various
countries, just when Stuxnet malware was discovered.
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Figure 13: Stuxnet Attacks Worldwide

We first look at Stuxnet malware, its propagation techniques and a proposed design to detect the malware.

3.8.1 Stuxnet malware- A study

Stuxnet was detected in the year 2010 in a Nuclear Enrichment Facility, at Natanz, Iran. It was observed to be the most
sophisticated and well engineered malware ever seen.Unlike other malware Stuxnet did not steal, manipulate or wipe
information of all hosts in a network. It was a target oriented malware designed to compromise an assigned target.
Stuxnet is designed to attack controller systems specifically by using SCADA applications as a means of distribution.
The malware was not remotely controlled rather it was stand alone and did not need any Internet access. As a part of
validation, the malware contacted some command and control servers and to prove the compromise of the target system.

The controllers are the Programmable Logic Controllers that control the data flow by using the application logic
specified by the user. It is real time and is connected to controlling hosts through a fieldbus network. The controllers
work on Ladder logic which is a small program that is void of any security metrics like integrity, confidentiality and
authentication. The logic on controllers are in turn use to control physical conditions of heavy machinery. Any undesired
changes occurring on the ladder logic results in improper functioning of heavy machinery. Heavy machinery refer to
complex machinery like the centrifuges, pumps, temperature regulators, pressure systems and so on. The working of
these machinery is very critical and any deviations can cause catastrophic disasters.

Stuxnet was designed to manipulate the ladder logic on which the heavy machinery rely. The idea was to inject or
manipulate the controller ladder logic of the controllers. This operation was very slow but the main advantage was the
stealthy behaviour of Stuxnet. Stuxnet could go unnoticed even bypassing the anti-virus programs. This ability was
provided to the malware through some agencies that specialize in this sector. The malware also passed the Microsoft
Software Driver Signing authentication system as it had digital signed drivers that could verify the authenticity. The
digital drivers were reportedly stolen from popular driver providers. These special capabilities made Stuxnet the most
stealthy malware. Stuxnet makes use of client-side applications as attack vectors on contrary to other malware that
use browsers, plugins or web applications. The use of client side applications to as an attack vector is expected by
the administrators, however Stuxnet manages to remain stealthy and undetected. Below are the features of Stuxnet
malaware.

• Multiple Distribution Vectors: An attack vector is a technique through which an attacker can gain access to a
host or a network to deliver a malicious payload. Stuxnet has multiple attack vectors to facilitate its distribution.
It makes use of 5 Zero Days from Microsoft Windows to support its propagation. The malware is first injected to
the target environment using a USB device containing the malware itself. This was achieved by social engineering
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methods, for example, giving away free USB drives at a Nuclear Science Conference which had the employees of
such plants. Stuxnet spread itself through USB media, hereby exploiting the LNK Zero Day vulnerability.

A Zero-Day vulnerability is an undisclosed computer system vulnerabililty which could be exploited to adversely
affect the host programs, data and also other hosts in the network . The other attack vectors that Stuxnet lever-
ages [38] are Network shared drives, Windows Printer spooler vulnerabilites, Windows Server RPC vulnerability,
Windows Control Center (WinCC) Database servers, Step 7 Project files and P2P mechanism. Additionally, Stuxnet
also utilizes the vulnerbilities of the Siemens Step 7 software that is used manage the PLCs. These are basically
rootkit techniques aimed at compromising and pulling down the the target system completely in a stealthy manner.
Stuxnet infects the libraries that Step 7 uses to manage the PLCs and replaces it with its own version.

• Malicious Payload The payload carried by Stuxnet is not huge but highly effective. It carries subtle payload files,
that exploit the vulnerabililties of target system. As discussed previously, Stuxnet employs different attack vectors
for its propagation. The payload is initially transferred to the transmission media and then, the malware flags to
check if the current host could be the target host. If true, Stuxnet actively begins to compromise the host else, it
waits for further propagation. Stuxnet payload consists of three parts. The first is a worm that executes all the
methods with reference to the base payload of the attack. The second is a lnk which executes the propagated
worm files. The third component is the rootkit which is responsible for stealthy behavior of the malware.

• Code Obfuscation Code packing is another term for code obfuscation. It is a technique followed that makes binary
and textual data unreadable and very complex to understand. This protects the code to be detected as a malware.
Obfuscation also makes it difficult for cyber monitors, anti virus engines and even humans to reverse engineer it,
to check if the code is a potential malware. Code packing is also done to hide important declarations that reveal
insights about malware behavior.There are several algorithms through which obfuscation can be achieved. Stuxnet
follows code packing for its entire payload thereby making it difficult to reverse engineer and also detect it.

• Anti-AV Functionality It is the feature where the malware safely bypasses the anti virus scan without any alarm.
Stuxnet gains this feature by its signed software signatures and also because of code obfuscation. These features
help Stuxnet to look as normal files and system level code.

• Data Masking It is described as unauthentic version of an organization’s data that is structurally similar. It is
used for purposes such as software testing and user training. This results in manipulating original data that may
be used by critical systems for controlling and managing heavy machinery. Stuxnet targets data and ladder logic
implemented in PLCs inorder to compromise the working of critical systems. The failure of critical systems lead to
serious consequences that may put human lives under risk.

• Robust Malware Architecture

Stuxnet has an architecrure as shown in the Figure 14. An ICS network as described in the figure has many hosts
which are bound by an internal network. The internal network also connects the hosts to the controllers (PLCs)
that manage the industrial machinery like motors and pumps. The propagation steps is as below:

1. A USB drive which is infected with Stuxnet is provided to employees of the plant through some public events
as goodies. Usually, social engineering techniques are employed to perform this step.

2. The infected USB drive is plugged into a host which is a part of the internal network. Stuxnet propagates
itself to the host system by exploiting the zero day vulnerabilities.

3. Stuxnet checks if the host system is connected to the Internet. If connected, it updates itself from a Command
& Control server.

4. The malware then checks for network shared drives that is mapped into the host machine. If mapped, Stuxnet
slowly propagates itself to the shared network drive. Stuxnet also checks if the host has the controlling
application installed for programming the controllers.

5. As discussed earlier, Stuxnet looks for various possible attack vectors like Print spooler service and basically
other services that are accessed by many hosts. It then targets such services for propagation to other hosts.
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Figure 14: Stuxnet Architecture

6. Once Stuxnet reaches a controller PC, where there is limited or no connectivity observed, it validates the
system by checking if there an application like Step 7, installed to program the controllers. Stuxnet now
tried to establish itself into the application logic to modify the ladder logic pushed into the controllers. This
scenario is similar to that of a Man-in-the-Middle attack where Stuxnet’s malicious files act as adversaries.

7. The modified ladder logic now controls the heavy machinery. These machines work based on the values
input to them by the controllers. If invalid inputs are passed, these critical systems fail to work normally and
lead to a disaster.

The above architecture also depicts the design aspects of Stuxnet. This malware was carefully engineered con-
sidering a typical ICS environment to facilitate its propagation. It is also accurately implemented to suit multiple
attack vectors.

• Digital Signature The applications installed for the Windows operating systems have to be signed with a trusted
certificate. The certificates have to be obtained by the vendors to sign their applications. As Stuxnet was to injected
to Windows hosts, it had to bypass the signature check mechanism without getting detected. This is possible only
by obtaining a legitimate vendor certificate. The developers of Stuxnet stole the certificates of trusted vendors like
Realtek, JMicron and imbibed them on the malware files. This way the probability of malware detection is greatly
reduced.
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3.8.2 Stuxnet-Propagation Techniques

After Stuxnet was detected in June 2010, there were many enthusiastic researchers who studied Stuxnet by reverse
engineering, cryptoanalysis, and forensical methods. Security enthusiasts who were curious also conducted research
in their private labs to investigate more about Stuxnet as it was declared to be the most sophisticated malware ever.
Dissecting Stuxnet was a challenge that many Organizations also looked forward for to optimize their products. Vendors
like Siemens and Microsoft were on their peril waiting for researchers to come up with their theories. Nicolas et al
[14] from Symantec Labs presented a dossier about Stuxnet and its propagation techniques. The W32.Stuxnet Dossier
provides the attack scenario, timeline, a survey of infected hosts and organizations throughout the world and Stuxnet
architecture. Stuxnet relies on vulnerabilities to exploit the plant. Stuxnet is dormant without these vulnerabilities. It
utilizes the Windows lnk exploit, 4 Zero days of Windows and the Siemens Step 7 software vulnerabililty. In what follows,
we discuss various propagation methods that Stuxnet employs to reach its target system.

Stuxnet does not have a dedicated process. It hides behind trusted processes. Table 1 shows a list of trusted processes
under which Stuxnet hides. In the course, it injects into these trusted processes. Once established Stuxnet implements
a Microsoft Remote Procedure Call (RPC) server and client by exploit the Zero days and performs automatic updates in
LAN. The WinCC is used for supervision and control of Siemens industrial systems. Microsoft SQL is used for logging.
The password is hardcoded in the SQL server and is publicly available. This vulnerability is leveraged by Stuxnet to gain
access as an administrator and modifying the tables with malicious Dynamic Link Library (DLL) representation.

Table 1: Trusted Processes
Product Target Process
Kaspersky KAV avp.exe
Mcaffee Mcshield.exe
AntiVir avguard.exe
BitDefender bdagent.exe
Etrust UmxCfg.exe
F-Secure fsdfwd.exe
Symantec rtvscan.exe
Symantec Common Client ccSvcHst.exe
Eset NOD32 ekrn.exe
Trend Pc-Cillin tmpproxy.exe
Windows Lsass.exe
Windows Winlogon.exe
Windows Svchost.exe

Stuxnet propagates using three mechanisms:

1. It infects the host using infected removable media (such as USB flash drives and external portable hard disks);

2. It propagates through the LAN to distribute itself to all hosts having access to the network drive and print spooler.

3. Injects into the Siemens Step 7 software controller logic files and propagates to the PLCs. It injects into the ladder
logic of the PLCs.

Leveraging any of the above three vectors, it uses seven vulnerability exploitation techniques for distributing to new
hosts in a network.

1. Exploits a zero-day vulnerability in Windows Shell handling of LNK files.The vulnerability was present in all
versions of Windows since Windows NT 4.0.

2. Stuxnet uses several techniques to try to replicate itself to accessible network shares and distribute itself through
the network.

3. Injects itself to printer servers using a zero-day vulnerability.

4. It uses an older Conficker RPC vulnerability to propagate through unpatched Windows computers as shown in
Figure 15. The RPC infected client requests newer Stuxnet version from an infected Stuxnet RPC server.
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5. It contacts Siemens WinCC SQLServer database servers and installs itself on those servers through database calls.

6. Injects copies of itself into Siemens STEP 7 project files to auto-execute whenever the files are loaded.

7. An earlier version of Stuxnet used an old variant of autorun.inf exploit [29] to propagate through USB drives.

Infected Machine 
acting as RPC 

client

Infected machine 
acting as RPC 

server

1. Call RPC  – Get the version 
number

2. Reply with installed 
version number

3. Call RPC – Request 
latest Stuxmet.exe

4. Send latest Stuxnet 
version

5. Install latest 
Stuxnet version 

received. Latest Stuxnet 
Version

Stuxnet Propagation through RPC

Figure 15: Stuxnet RPC Propagation

3.8.3 Malware Detection Design

After a thorough analysis of the propagation techniques of Stuxnet, identifying a environment to facilitate its propagation
considering HosTaGe ICS is challenging. The most feasible technique that could be simulated by HosTaGe is the network
share environment. We realise this environment through protocol simulation feature of HosTaGe ICS. HosTaGe ICS will
contain the Master profile that emulates a network drive under the same /24 network. Further, the files propagated will
be verified for malware. We discuss the actual simuation mechanism in section 4

3.9 Summary

This section describes the proposed system for HosTaGe ICS which aims to detect ICS specific attacks, multistage attacks
and generation of signatures for Bro IDS. The section provides architecture for HosTaGe ICS with explanation for com-
ponents HosTaGe Core, logger, Graphical User Interface and services. The HosTaGe core forms the core mechanism of
HosTaGe ICS which consists of Emulator and Connection Guard. The logger is responsible for logging the attacks and
connection data in SQLite database. We explain how port binding is handled in HostaGe and also mention the services
that HosTaGe offers. The section also explains about protocols HTTP, Telnet, FTP, SNMP, SMTP, SMB, Modbus and S7.
The section provides a description on design of Formal model of attacks, that represents attack stages.

Further, the detection mechanisms is classified into three types of attack classes which includes SPLD, MSLD, and PLD.
A brief description on the design of signature generation , where HostaGe ICS makes use of attack results logged by
HosTaGe is discussed. An overview of the master and slave profiles of SCADA with the necessity to check for internal and
external attacks. Further, a brief explanation and study on Stuxnet malware is provided with its features and propagation
mechanism. We also discuss the various attack vectors that Stuxnet employs to reach the target system.
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4 Implementation

We discuss the architecture, features and protocols offered by the Siemens Simatic S7 200 PLC and also security concerns
of ICS SCADA systems in section 3 . There were many exploit areas that were discovered. The PLC was subjected
to various exploits and attacks. However, large scale attacks like Stuxnet were successful because of vulnerabilities that
existed on the Host controllers as well, that is, Windows OS hosts. It made use of zero day exploits from both Windows OS
and the Siemens PLCs. The attack was well designed and strategized considering vulnerabilities on both systems. There
are also small attacks like information leakage from an Internet facing PLC, hosting a webserver. Over the years many
vulnerabilities have been identified on the Siemens PLCs. It becomes a great challenge to make these systems secure.
The PLCs have limited resources and thereby security measures like data encryption may prove expensive. Hence, data
encryption was avoided. This decision of ignoring secure features induced several exploits for the device.

The honeypot must be designed keeping all the discovered exploits inorder to be more effective in attracting the
attackers. We consider both the external and internal attack approaches, hereby devising strategies to capture both kind
of attacks. Before we design our honeypot, it is very important to understand the previous known attacks on PLCs, their
impact and the vulnerabilities that caused those attacks.

4.1 HosTaGe ICS honeypot

Based on the design decisions made in the section 3, HosTaGe is implemented to simulate the services of the Siemens
Simatic S7 200 PLC. The services include the simulation of HTTP, Modbus, S7, SMTP, Telnet, FTP, SNMP protocols
with respect to the PLC. HosTaGe also supports creation of honeypot environment profiles. We leverage this feature
to create profiles of nuclear power plant that includes a Modbus slave open to the Internet with the other protocols.
The services offered by the other protocols are also customized based on the profile chosen by the user. The services
implementation involve handling incoming connection requests on respective ports of the protocols. The main objective
of a honeypot is to keep the attacker engaged and allow him to pursue his attack strategy. A proper response mechanism
is required which provides satisfying responses to the attacker commands and packets. For example, if the attacker tries
to access the webpage by sending a GET request to port 80 of the honeypot, a webpage must be displayed to the attacker.
Further, the webpage must also be dynamic depending on the honeypot profile chosen on HosTaGe. This feature has
been implemented to keep the attacker engaged to HosTaGe while all the packets are captured and stored as records in
HosTaGe attack database.

We also implement the detection of malware propagation through the SMB protocol. This detection forms an important
aspect of detecting popular malware like Stuxnet through the network. This forms as an extension to the implementation
of the SMB protocol for the Modbus Master profile. As discussed in the exploit areas, the most dangerous incident
reported with respect to ICS SCADA systems is Stuxnet. We try to replicate the scenario to facilitate Stuxnet propagation
by simulating HosTaGe as a shared network drive. We discuss this module further in the section 5.2.3.

During the course of thesis, an attack pattern was recognized and observed amongst the attacks recorded by HosTaGe.
The attacks were later analysed to be Multistage attacks. Multistage attacks are attacks that originate from the same
source IP and attempt to attack multiple active protocols on the target system within a time window. This helps in
reducing false positives and acts as a means to detect genuine attacks. The detection of Multistage attacks labelled as
MSLD in section 3.5 has been implemented based on the formal model shown on Figure 9. The approach to detect MSLD
is discussed further in section 4.4

The signature generation module is one of the important component. It focuses on creation of signatures for an IDS
based on the attack data captured and stored on HosTaGe. Signatures are generated and exported as files which can
be mounted on an IDS for signature based traffic analysis. The creation of policies or rules is also implemented for the
detection of MSLD. The implementation is further discusses in section 4.5.

4.2 Detecting Internal Attacks

As discussed previously, ICS SCADA systems have master and slave profiles. Though the devices are subjected to attacks
from external attacks, when made open to the Internet, it is proved that major attacks in the past were triggered by
systems in the internal network. Attacks from malware such as Stuxnet spread from host systems in the same network.
Attacks from internal systems have proved to be more effective and dangerous as they do not leave any fingerprints,
also their signature cannot be identified by the anti-virus softwares and other protection tools. The Stuxnet worm was
reported to be injected through a USB flash drive. It made use of zero day vulnerabilities of the Windows operating
system, the most popular one being how the Windows operating system handles the LNK [34] files, which are used by
the operating system to interpret devices capable of AUTORUN functionality, and to detect the software to run the file
based on its format.
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An anatomy of similar kind of viruses and malware revealed that they made use of as many zero day vulnerabilities as
possible to make the malware attack more effective and stealthy. Identifying such malware attacks through our honeypot
mechanism is a challenge, as it involves careful design and simulation of services involved in such attacks. To achieve this,
the conditions under which such worms propagate and try to sneak into the network is studied. Analysis of the studies
made by researchers [28] shows that the worm looks for different attack vectors, exploits the zero day vulnerabilities of
the Windows OS and also the DLL of the PLC vendors.

As discussed above Stuxnet exploits the zero day vulnerabilities on a Windows host and is dormant without it. Hence
it is required to simulate atleast one of the zero day vulnerability. Kolesnichenko et al. [26] in their research try to perform
a Quantitative Analysis of Stuxnet to find out its feasibility and the required conditions to increase its precision. The best
suited amongst the five was the propagation through the network shared drive. This service could be simulated like on a
WebDav server. We could then wait for the virus to propagate itself into this simulated location.

4.3 Malware Detection

Malware detection is a crucial component of HosTaGe ICS. As discussed in section 3.8.1 our main goal is to detect
Stuxnet in an ICS environment. To incorporate this, we simulate the required environment for its propagation. We
leverage the network share, one of the attack vector used by Stuxnet for its propagation[8].The SMB protocol also
known as Common Internet File System (CIFS) is an application-layer network protocol used for file sharing, printer
sharing and also certainly in Active Directory services. The protocol was initially based on Microsoft Windows operating
system and was called the Microsoft Windows Network as it was a domain binded protocol. SMB provided communication
between hosts in an internal network for information exchange. Stuxnet also uses printer spooler service as one of its
attack vectors.

We thus infer to implement SMB protocol to simulate the network share drive or the print spooler attack vectors. The
protocol emulation is a part of the simulation of Modbus Master profile. This profile emulates a set of default protocols
that are open on a Windows host. Along with Modbus protocol and SMB, the target system simulated resembles to a
Master host in an ICS SCADA network. Stuxnet propagates from a host in an internal network to all hosts until it finds
a host with direct access to a controller. The simulated Modbus Master provides the behavior required by Stuxnet for its
infection. An environment is created to evaluate the detection of Stuxnet which is further discussed in the evaluation
section 5.2.3. Stuxnet propagates to the network share using the SMB protocol.

Once the malware has propagated into the network share, it is detected by the file injection detection module. Fur-
thermore, a hash of every file injected is calculated. This hash is verified by sending it to the VirusTotal database which
returns if the file is a malware. The VirusTotal repository provides an Application Programming Interface (API) to per-
form this validation. If the injected file is found to be a malware, it also returns the name of the malware, along with the
inferences made with popular AntiVirus.

Figure 16: HosTaGe ICS File Injection
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Figure 16 shows the File Injection detected by HosTaGe ICS with the attack results. The details of the file injected is
shown in the CONVERSATION. It contains the the name of the file injected, checksum and details of the file as identified
by Virustotal. If the file is found to be a malware, like in the figure 16, Virustotal responds with the details of the malware
based on its malware database with respect to the anti virus vendors. We take into account the major players in the anti
virus providers such as Kaspersky, Microsoft, McAffee, Symantec, AVG, TrendMicro and QuickHeal. The hash of the file
is calculated to verify the actual contents of the file and not just the name of the file. This also reduces false positives of
the attackers who just change the file names to threaten systems with a file injection.

Validation by the various Anti Virus providers ensures better analysis and inference. The Figure 16 shows the identifi-
cation of a file as a part of the Stuxnet malware. The validation from various Anti Virus also reduces false positives and
also provides conformation. The Signature generation module is enabled for file injection. The signature file generated
validates incoming packets for the signature, hereby identifying the malware injection and propagation. Identification
of malware propagated through internal network forms a good defence mechanism in ICS systems. Popular malware
designed for ICS, propagate to the target system by distributing itself to the internal network. The attack record also
shows that the attack was from a Internal Network.

4.4 Multistage Attack Detection

Multistage attack detection involves identifying multiple protocol attacks from an attacker in a specific time window. We
use the attacker IP address, the time of attack and the protocol targeted to identify a multistage attack. These attacks
filter false positives amongst many attacks detected by HosTaGe ICS. As mulistage attacks involve attacks in a sequence,
it can be formally modeled. This representation of both the attacking and detection strategy provides an overview to
implement the multistage attack detection service. We adapt the formal state machine model discussed in section 3.4
to implement multistage attack detection. We consider time to be an important part in our detection mechanism as it
eliminates false positives. Multistage attacks are identified by the attack correlation mechanism.

The steps involved in the detection of multistage attacks is as follows:

1. All the attacks for a specific time period are fetched from the attack database.

2. The attacks are sorted based on the source IP address. (attacker IP address)

3. Once sorted, the attacks are checked for the targeted protocols. If the target protocols are the different, a multistage
attack is logged.

4. The attacks are checked on sliding window basis to get lesser false positives.

Figure 17: HosTaGe ICS Multistage Attack Detection
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The logged multistage attacks contain the attacker IP address and the targeted protocols with the timestamp. An
analysis of the individual protocols can be performed with the attack logs of the protocols saved. Significant observations
can be made by every multistage attack as they provide a basis of target specific attacks towards an organization. These
attacks remain undetected by IDS. Multistage detection service is implemented as a background service in HosTaGe ICS.
When it is enabled, the attack logs are constantly scanned for multistage attacks. This service is invoked every fifteen
minutes with the attacks fetched for the last twenty minutes. This service can also be disabled through the settings option
of HosTaGe ICS.

Figure 17 shows the multistage attack detection by HosTaGe ICS. The record shows an overview of the attacker IP
address and the protocols targeted. The attacks can be individually analyzed by selecting the respective attack record
from the Attack Records fragment. The above record can also be used to generate policies for the Bro IDS. The policy
generated checks incoming packets for attacker IP address and the protocols targeted. The time frame is also included to
avoid false positives.

Listing 4 shows a policy generated by HosTaGe for a multistage attack detected. Further, Bro provides datatypes
such as subnet and vectors which help in implementation of network specific data. Bro has pre-defined modules such
as connection_established where the task to be performed on a connection establishment could be specified. The logic
derives the attacker IP, subnet and the protocols attacked from HosTaGe ICS multistage attack record. HosTaGe ICS
provides a method for mapping the protocols attacked to their respective ports. This information is passed to the policy
generation module.

Furthermore, we check if the source IP of the connection request is the same as the attacker IP, its subnet and protocol
port as identified by HosTaGe ICS. We also specify the time interval to avoid false positives. On receiving the next
connection, the policy checks for the next protocol specified in the protocol vector. If the source IP matches the attacker
IP and the attacked protocols are as specified in the protocol vector, a multistage attack is detected by the policy. We
represent the following as an algorithm below in Listing 1

Listing 1: Algorithm for Multisage attack detection policy

Step 1: Start

Step 2: Fetch attacker IP, attacked protocols array from HosTaGe ICS attack record.

Step 3: Set count=0; Wait for new connection.

Step 4: On new connection; for i in attacked_protocols_array

If (source_ip == attacker_ip) go to step 5,

else goto step 3

Step 5: If count = 0, go to Step 6. Else, goto Step 7.

Step 6: if {(target_protocol == attack_protocol_array[count])

count ++;

goto Step 4

}

Step 7: if {(target_protocol == attack_protocol_array[count])

print (Multistage attack detected)

}

end for

Step 8: End

There were certain significant attacks observed during the evaluation period. A brief description about these results
are discussed in the section 5.

4.5 Signature Generation

As discussed previously in section 4.5 Signature Generation module generates signatures for the attack traffic that is
logged. We consider the Bro Network Security Monitor for generating signatures. The signature generation module is a
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combined model involving modules of HosTaGe. Additional modules have been implemented to support signature gen-
eration for the Bro IDS. We highly make use of Bro’s features to incorporate the signatures generated through HosTaGe.
A brief discussion about the Bro NIDS and the signature generation is provided in the below sections 4.5.1, 4.5.3.

4.5.1 Bro Network Security Monitor

Bro is an opensource, Unix based powerful network monitor that provides a strong analysis framework. It provides a
good platform for traffic analysis, signature matching and network forensics. It is originally written by Vern Paxson,
and now maintained by researchers at International Computer Science Institute, Berkeley, CA and worldwide. Bro is
implemented using the Bro scripting language. it is often associated to being a framework and could be used to build
effective IDS. Bro is open-source and provides lot of documentation with researchers involved from all over the world.

Bro can analyze traffic both live and offline to perform analysis, take network measurement, forensic investigation and
traffic baselining. Bro has many features that aim at building better IDS. The features are discussed below:

• High-Speed and large volume monitoring: Bro is capable of handling huge amounts of traffic. It is also quick
in analyzing the traffic for the policies and signatures. Bro can also be deployed to work as a distributed security
monitor, where it can share states and also propagate event data to notify other distributed peers.

• No Packet Filter Drops: As discussed in the previous point, Bro is capable of handling huge traffic flows. There is
very minimal packet drops observed. If an application using a packet filter cannot consume packets as quickly as
they arrive on the observed link, the filter buffers the packets for later consumption. However, the filter may run out
of the buffer and at such point it drops further packets that arrive. From a security monitoring perspective, drops
can cause inconsistent monitoring, because the dropped packets might contain interesting traffic that identifies a
adversary. Thus, Bro makes sure that the packet drops are minimized, thus making it possible to capture traffic
ensuring continuity.

• Real Time notification: Detecting attacks online as they happen is very much useful in taking relevant steps
for mitigation and notification in real time. Offline detection leads to delay in analyzing the attack and being
proactive. Bro supports providing real time notifications of attacks. An attack detected live provides better trace
back capabilities and to minimize damage.

• Independent Policies: Bro separates the working mechanism from its policies. This offers more flexibilities
in customizing the policies and not the mechanism. This also leads to simplicity in analyzing the policies and
rewriting them. Policies could also be referred to as rules as in a IDS representation.

• Language Support: The Bro language is designed keeping network communications as a base. It offers datatypes
for network basics like IP address, subnet, port, source IP, destination IP, source port and destination port. It
also supports conditional and non-conditional programming keywords like in , when and match which are very
beneficial.

• Scalable and Extensible: As Bro can be deployed as a distributed environment, it can easily scale to monitor
huge networks and share state information. Bro has coordinators, peers and master systems to manage the Bro
deployments. Bro is opensource and this enables to extend the platform for independent researchers. This is also
provides the freedom to develop and test new policies and modules.

• Protocol Support: Bro processes both TCP and UDP packets. For each TCP packet, the connection handler checks
the entire TCP header and validates the TCP checksum for the packet header and payload.
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Figure 18: Bro’s Architecture [39]

Bro’s architecture involves Bro Event Engine, Policy Script Interpreter and libcap. Figure 18 depicts the architecture of
Bro and the analysis framework. The role of each component is described below:

• libcap: libcap is the packet capture library used by Bro. Libcap isolates Bro from details of network link technology.
It also enables to Bro to work offline by accepting packets to analyse threats and malicious content.

• Event Engine: This layer performs integrity checks to assure that packet headers are well-formed and also verifies
the IP header checksum. Failure of checks generate events indicating the issue resulting in dropping of packets.
If the checks succeed, then the event engine fetches the connection state with reference to the tuple of the two
IP addresses and the two TCP or UDP ports, creating new state if no states exist. It then dispatches the packet to
a handler for the current connection. Bro maintains a tcpdump trace file associated with the traffic it sees. The
connection handler decides, if the engine should record the entire packet or just its header to the trace file. Upon
return whether the engine should record the entire packet to the trace file or just its header, or nothing at all.

• Policy Script Interpreter: The event engine checks if any events have been raised. If any events are generated it
processes the events as per the event handler specified until last event. Bro’s emphasis on asynchronous events as
the connection between the event engine and the policy script interpreter, provides lot of extensibility. Adding new
functionality to Bro generally consists of adding a new protocol analyzer to the event engine and then writing new
event handlers for the events generated by the analyzer. This holds true also for the policies and the signature. We
leverage this feature in HosTaGe to generate policies and signatures for Bro.
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Figure 19: HosTaGe ICS Signature Generation

Figure 19 shows the signature generation Module of HosTaGe ICS. The module has been enabled for Modbus, S7,
File Injection and multistage attacks. The screen HosTaGe Records shows an icon towards the top right corner. On
press of this icon, a dialog box confirming the signature generation appears. The signature is generated and saved
in the phone external memory after the user confirmation. This signature can be mounted into Bro IDS.

4.5.2 HosTaGe Records

HosTaGe stores all the packet data it receives in the form of records. The records include source IP, source port, attack
type, protocol and the packet conversation. The data stored as conversation is the payload of the connection packets.
This packet data can be considered for pattern matching and signature generation. This data is passed as a parameter
for signature generation module.

4.5.3 Signature Generator

The Signature generator contains pre-defined templates which are implemented for specific protocols like Modbus and
SMB for File Injection. These templates accept parameters from the conversation information stored. It also accepts the
source IP address as a parameter. The source IP address is included to avoid false positives. As discussed previously in
Bro’s architecture, there are also policies that Bro uses to check the incoming traffic. The signature generator module
also generates policies for the multistage attacks detected by HosTaGe. In the case of multistage attacks, the conversa-
tion information is not considered for the signature generation. The source IP address and the protocols attacked are
considered for the generation of policies for multistage attacks.

Figure 20 depicts the modules involved in the generation of signature. Each module consisting of attributes and
methods that are explained in this part of the report. The module Hostage is connected to module Listener. Hostage
creates listeners for the protocol enabled by the user. The module Hostage consists of attributes which includes listener,
context and connection information. The Hostage defines methods to start and stop listener, to notify UI and to get
connection method. The attributes declared in the Listener module includes protocol, port, service, server and connection
register. The module defines methods to start and stop service, and to log attacks. Each listener module can have one or
more type of records.

There are three types of records which include Attack record, Message record, and Network record. All three types
of record merge to form a single module called Record module. An attack record consists of attackId, bssid, device,
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protocol, localIP, remoteIP, localPort and remotePort. It defines methods to record the attack and write to Parcel. The
module Message record consists of attackId, timestamp, id, type and packet with methods defining the messageRecord
and writeToParcel. The Network record has bssid, ssid, timestamp , longitude, latitude and accuracy. It also consists of
method that defines writeToParcel, network record and a method to set accuracy.

The three types of records are integrated in the Record module based on their respective attackId. The integrated
information is further utilized in generation of signature. The signature generated module consists of methods that
defines signature generation, and its file, methods for conversion and to get integrated record.

Listing 2 shows the generated signature for a Metasploit script that checks for Modbus service on the target system. The
pattern specified is checked for all incoming packets for specific contents. If the incoming packet matches the signature,
an event is raised. The administrator can specify how to handle event.

Listing 2: Bro Signature for Modbus service through Metasploit script
signature modbus-signature1 {

ip-proto == tcp

dst-port == 502

payload /\x21\x00\x00\x00\x00\x06\x01\x04\x00\x01\x00\x00/

event "Modbus attack detected!"

}

4.6 Logging Mechanism

Data analysis of the attacks received also form an important part of a honeypot. This feature enables administrators to
carry out forensics on the attack data and check for new malware types. Through attack analysis the attack vectors can
be mapped which help us understand the strategies followed by attackers to compromise systems. The Attacks Log has an
entry of all the incoming and outgoing connection information. Each connection received to HosTaGe is further divided
as attack record, network record and the message record.
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Figure 20: Signature Generator Class Diagram
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4.7 Summary

In this section we focused on implementation of the HostaGe ICS honeypot. HosTaGe ICS is implemented to simulate
the services of Siemens Simatic S7 200 PLC. The detection of malware through SMB protocol is also implemented which
explained about detection malware like Stuxnet in the network. Furthermore, we looked into detection of malware
and its validation which was one of the crucial component in HosTaGe ICS. In this part of the section we explained the
detection of malware once it is propagated into network share.

We also overview how multistage attack is detected by the HostaGe ICS which involved detection of multiple protocol
attacks from an attacker in a particular time window. We briefly explain the algorithm of multistage attack detection
which involved four main steps. We explain the implementation of signature generation which generated the signatures
for the attack traffic that was logged. A brief discussion on Bro IDS is made, which discusses some features of Bro .
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5 Evaluation

In this section, we evaluate the detection capability and performance of HosTaGe ICS. Evaluation of the detection capa-
bility involves the analysis of the attacks received on individual protocols emulated by HosTaGe ICS. Further, the results
obtained from the comparison of HosTaGe ICS with Conpot is evaluated. Detection of multistage attacks and signature
generation were also the focus of the thesis. We evaluate the interesting results obtained through the multistage attack
detection service and the signatures generated for the Bro NIDS by HosTaGe ICS. We also evaluate the environment setup
for the propagation of Stuxnet and detecting it through HosTaGe ICS. HosTaGe ICS was deployed on a mobile device
with resource constraints. We discuss the evaluation and performance of HosTaGe ICS in the performance evaluation.
We also evaluate the impact of Shodan services and probes received and thereby determine the detectability of HosTaGe
ICS.

5.1 Experimental Setup

There were two experiments carried out that involved setting up of required environments for the evaluation. The two
environments are discussed below.

The first experiment was to setup an environment for the evaluation and comparison of Conpot with respect to
HosTaGe ICS. Figure 21 shows the environment setup for the evaluation of HosTaGe ICS with Conpot. HosTaGe ICS
was deployed on a rooted Samsung Galaxy S4 mobile phone. Conpot an ICS specific honeypot was deployed on a Rasp-
berry Pi using an image file, Honeeepi 4. Honeeepi has a collection of honeypots and profiles which can be customized
based on the network. Both honeypots were setup on a /24 network and exposing the devices to the Internet by lifting
rules on a firewall. The services emulated on these devices were publicly open to the Internet. The devices were behind
NAT and all the packets were routed to the honeypots from the router using port forwarding. This helped us to have a
static IP address on both devices that could be accessed publicly. The IP addresses of the devices were on the subnet.
This gave a feeling to the attackers of a serial line connected to two devices that are open to the Internet.

Router 1

Router 2

Hostage

Conpot

Switch ISP Router

Internet

Figure 21: Conpot and HosTaGe environment setup

Conpot logs all the connection data onto a log file. The attack based on HTTP, Modbus, S7 and SNMP protocols is
logged and all other connection requests that is not relevant were discarded. The logs contain the source IP address,
the timestamp and the protocol attacked. The logs of protocols like Modbus and S7 contain header information of the
attacks.

HosTaGe ICS logs all the attacks in its database. HosTaGe ICS has two ICS specific profiles. These profiles emulate the
master and slave devices with the respective protocols. The master profile extends simulation of a Windows XP host with
Modbus, S7 and SMB protocols, while the slave simulates a PLC with Modbus, S7, SNMP, SMTP, FTP, HTTP and Telnet
protocols. All the connection attempts to these protocols are logged as attack records in HostaGe ICS database. Further-
more, HosTaGe ICS is also able to detect file injection, portscan and multistage attacks. The attack information logged by
HosTaGe provides lot more information when compared to Conpot. The attack records contain the conversation or the
message exchange taking place between the attacker and the honeypot hereby providing better analysis opportunities.
The detailed summary of the attacks logged by Conpot and HosTaGe ICS are described in the forthcoming sections.

4 https://redmine.honeynet.org/projects/honeeepi/wiki
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The second environment was setup for the evaluation of the signature generation of HosTaGe ICS. Bro, a powerful net-
work analysis framework that could be customized to be an IDS. It offers powerful customization and logged mechanisms
for administrators. The signatures generated by HosTaGe is deployed on the Bro network security monitor.

Figure 22 shows the environment setup of Bro with HosTaGe ICS. Bro was setup on a Debian virtual machine. Conpot
also was installed in the virtual machine to attract more attacker traffic. Bro logs all the connection attempts to the
system. Logs are further classified based on TCP, UDP and also on various protocols. Logging can be customized by the
administrator based on events raised by signatures and policies. Bro is shipped with many active policies and signatures
by default. There are policies for HTTP, HTTPS, Modbus, SNMP and many more [39].

HosTaGe ICS

Attacker System

Bro VM with conpot instance

Router
Internet

Figure 22: Bro and HosTaGe ICS environment setup

There are also policies that are classified as weird traffic based on some experiments by Bro. Bro has two traffic
operation modes. Firstly, Bro can be setup to monitor live traffic, thereby applying desired policies and signatures. This
option is dynamic and works like an active NIDS. Malicious packets that are identified can also be dropped before
entering the internal network.Secondly, Bro can be used to analyze offline traffic which can be fed as pcap files. The pcap
files can be checked for policies and signatures. Hence Bro supports both online and offline traffic analysis. We leverage
this to evaluate the signatures generated by HosTaGe ICS.

Bro provides a flexible framework for evaluation and analysis of traffic. The signatures generated for Bro were also
enabled for live traffic monitoring to check for accuracy by attacking the system in realtime. The signatures were accurate
in detecting the attacks.

5.2 Detection Evaluation

The main aim of HosTaGe ICS is to detect ICS specific attacks efficiently. HosTaGe ICS provides mechanisms to detect
attacks with respect to individual protocols and also to detect popular attack strategies such as portscan, file injection
and multistage attacks. It is very important to evaluate the results obtained using these mechanisms inorder to determine
the efficiency and productivity of the application. We compare HosTaGe ICS with Conpot, an interactive ICS honeypot,
to evaluate the detection capability. Further, HosTaGe offers detecting malware that is propagated through protocols
that are open in ICS networks. We evaluate the detection of Stuxnet, a popular and devastating malware in ICS SCADA
systems. The evaluation of the featured capabilities discussed above is summarized in the following sub sections.
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5.2.1 Analysis of Individual Protocol Attacks

Table 2: Attack results per Protocol in HosTaGe ICS

Week
HTTP MODBUS TELNET S7 Comm SMTP
HosTaGe ICS HosTaGe ICS HosTaGe ICS HosTaGe ICS HosTaGe ICS

Week 1 July 7th-12th 83 9 177 NA NA
Week 2 July 13th-19th 174 10 283 NA NA
Week 3 July 20th-26th 127 11 514 NA NA
Week 4 July 27th-August 2nd 79 11 260 NA NA
Week 5 August 3rd-August 9th 83 9 225 NA NA
Week 6 August 10th-August 16th 94 11 154 2 12
Week 7 August 17th-August 23rd 116 9 198 1 24
Week 8 August 24th-August 30th 88 13 256 1 17
Week 9 August 31st-September 6th 109 7 512 4 9
Week 10 September 7th-September 13th 89 14 239 0 14
Week 11 September 14th-September 20th 104 10 212 2 18

This section presents analysis of various protocols emulated by HosTaGe ICS. It consists of results for 11 weeks from
7th July to 20th September 2015. We need to note that HosTaGe is placed outside the firewalls, by making it face the
Internet. The HosTaGe and Conpot had similar IP address which means they were involved in the same/24 sub-network.
The analysed result of protocols is shown in the Table 2.

The table 2 consists of protocols emulated by HosTaGe ICS which includes HTTP, Modbus, Telnet, S7 and SMTP
protocols. The Telnet protocol results have been gathered as it is considered to be an important attack factor for ICS
networks. Note that the S7 and SMTP protocol is considered for later weeks as its implementation was completed in a
later stage.

We also identified some genuine attack results for the Modbus protocol during the evaluation period. These were
identified to be genuine as the attackers came back and tried to probe the target multiple times. The Table 3 shows a list
of attacker IPs with the location and the type of attacks carried out. This information forms a basis of detection evaluation
of HosTaGe ICS. We provide only a overview of the attacks in the Table 2 with respect ICS profiles. There were a lot of
interesting results that were observed during the evaluation period. One such interesting result was the detection of an
attack pattern which led to the identification of multistage attacks which we discuss in further section.

Table 3: ICS Protocol Attacks Overview
Attacker IP Number of Attacks Type of attack Location
5.200.120.251 3 Modbus service check Iran.
71.6.165.200 2 Modbus port scan, with read coil San Diego, California, United States.
198.20.69.98 6 Modbus service check Chicago, Illinois, United states.
188.138.1.218 2 Modbus read coil Germany.
101.69.178.234 5 Modbus service check Hangzhou, Zhejiang Sheng, China.
37.153.181.219 4 Modbus port scan Iran.
169.54.233.116 2 Modbus service check United States.
52.10.40.42 4 S7 Service detection Boardman, Oregon, United States
80.13.27.236 3 Modbus service check France

5.2.2 Conpot and HosTaGe ICS attack comparison

In the section 2.6.4 Conpot is described briefly. Conpot is an ICS honeypot which simulates the behavior of a Siemens
Simatic S7 200 system. It has the S7, Modbus , HTTP and SNMP protocols implemented to support the simulation of the
PLC.

The purpose of this experiment is to compare the two honeypots (HosTaGe and Conpot) and to detect the automated
attacks that targets the ICS networks and also the reason for not advertising the honeypots. However, it is shown that
both honeypots are probed by well known search engine Shodan. c.f 5.4
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Conpot was deployed on one of our servers and was exposed to the Internet for attacks. All the connection packets
received for HTTP, SNMP, S7 and Modbus are logged. However, the complete packet with the payload information is
not logged by Conpot. The logging mechanism is different for each protocol. For evaluation, HosTaGe ICS was also
deployed and exposed to the Internet for attacks [58]. Both honeypots were kept running for a specific evaluation period
to analyze and compare the results at the end of the evaluation period.

The honeypots were deployed in controlled environments with no firewalls between them and the Internet in the same
/24 subnet. The results of the analysis are shown in Figure 23. The results gathered from the two honeypots for the
HTTP, Modbus and S7 protocols are compared. The Telnet protocol is a part of HosTaGe ICS simulation. In addition to
the mentioned protocols, HosTaGe ICS also received a lot of Telnet attacks. Telnet is considered important as it provides
a shell access on the PLC devices, through which command and control is possible directly. We also show the Telnet
attacks in Figure 23.
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Figure 23: HosTaGe and Conpot Comparison

Inferring some results from the Figure 23 we can note that HosTaGe exhibits good and on-par detection accuracy when
compared to Conpot. In the case of HTTP, HosTaGe ICS is observed to have more attacks than Conpot and remains on par
with Conpot on Modbus protocol. It is also observed that the results obtained through the Modbus protocol are a part of
wide scans which are operated through research communities. For example [12]. It is important to mention that neither
of the honeypots were advertised in any form on the Internet. However, Shodan the online vulnerable device database
and search engine managed to find and probe both honeypots. This is further discussed in section 5.4.

The main goal of this evaluation was to compare the performance of HosTaGe ICS with Conpot in terms of attack
detection and gathering. It is notable to observe that Conpot runs on a full PC environment while HosTaGe ICS performs
equally better on a mobile environment.

This inference forms a basis for proving that HosTaGe ICS is a powerful honeypot which runs efficiently on limited
resources and is capable of simulating the services of real devices on a mobile device platform.
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Figure 24: Stuxnet Propagation Environment

5.2.3 Stuxnet Propagation

Stuxnet uses specific attack vectors to propagate to its target system. It remains dormant if it does not find the required
attack vectors for distributing itself to the network. The most feasible attack vector that can be simulated in our evaluation
environment is to simulate the network share service.

Figure 24 shows the environment setup for the evaluation of Stuxnet propagation and detection.We create a suitable
environment for the propagation of Stuxnet through HosTaGe ICS and a vulnerable Windows XP box. The experimental
setup for the evaluation is performed as below:

1. Stuxnet requires a vulnerable host with zero days to initially get active. A host system with vulnerable Windows
XP operating system that is vulnerable to Zero Days is setup in the evaluation network.

2. HosTaGe ICS is deployed in the subnet with Modbus Master profile active. This profile enables the SMB protocol
emulated that simulates a shared network drive in the network. This shared drive has a structure that resembles
the SMB/CIFS file share of the earlier Windows systems.

3. We deploy a host system with a packet capture tool like Wireshark as a tap mechanism. Wireshark monitors all the
information that is communicated between the vulnerable host and the target system.

4. The shared network drive simulated by HosTaGe ICS is mapped in the Windows XP machine.

5. The Windows XP host is injected with Stuxnet using a USB Flash drive. Stuxnet leverages the LNK5 exploit of the
Windows Zero Days to inject itself into the System files.

6. Once established, Stuxnet updates itself from a Command and Control server. Stuxnet checks if the current host
communicates with a PLC. If yes, it infects the PLC through the Siemens Step7 software through a software attack
vector. If not, it checks for other attack vectors to propagate itself to other hosts in the network.

7. Stuxnet detects that the host is mapped to a network shared drive and uses this attack vector to propagate itself
to the drive. It propagates using the dropper file, dropper.exe into the shared drive. This propagation is captured
using the Wireshark tool. The Figure 25 shows the propagation from the host system to the network shared drive
which is simulated by HosTaGe ICS.

8. The file propagated is detected by HosTaGe ICS. A hash of this file and its contents is computed and validated
for malware from Virustotal malware database. Virustotal returns the name of the malware identified by various
antivirus providers to HosTaGe ICS thereby validating the injected file as Stuxnet.

5 https://technet.microsoft.com/en-us/library/security/ms10-046.aspx
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Figure 25: Wireshark capture of Stuxnet Propagation

5.2.4 Multistage attack detection and Inference

There were three significant multistage attacks. Among them the IP ’5.200.120.251’ was interesting as the location of
the IP is approximated to be a Prison Facility in Tehran, Iran(which is also approx 10 kms away from the Tehran Nuclear
Research Center). The attacker performed a portscan and sent a HTTP GET request to the IP. The next step was an nmap
script to check if a Modbus service is running on the host. Listing 5 shows the script used for this attack. The second
interesting attack came from IP ’183.131.76.132’ which is also approx 15kms away from Zhejiang Nuclear Industry in
China. The attacker approached the HTTP protocol first and then targeted the Modbus protocol by sending a service
query to the host. The third interesting attack was from IP ’181.143.236.179’ which is 12 minutes away from EPM Power
Plant in Colombia. The connection was first established to HTTP followed by a portscan and then by a Telnet session.

Table 4: Multistage Attacks Overview
Attacker IP Protocol/Attacks Latitude, Longitude
183.131.76.132 Portscan, HTTP, Modbus 29.1068, 119.6442
181.143.236.179 HTTP, Portscan, TELNET 6.2518, -75.5636
5.200.120.251 Portscan, HTTP, Modbus 35.6961, 51.4231

5.3 Bro Signature Generation and Evaluation

Generating multistage attack signatures is one of the mainstream features of HosTaGe ICS. We follow a series of steps to
evaluate the signatures generated.

1. We pose as an adversary and attack HosTaGe ICS with multistage attacks as a goal. The attacks are captured on a
packet capture tool like Wireshark and saved as a ’pcap’ file for further reference.

2. HosTaGe ICS detects the attacks from the previous step and generates signatures from both the protocol and
payload-level interaction.

3. To determine the applicability of the generated signatures, we perform two different tests. All tests utilize publicly
available datasets of network traffic (in the form of pcap files). They consist of synthetic and real network captures6

, malware focused traffic 7 , and honeypot captured traffic 8.

4. We then determine whether the generated signatures detect false positives. We import the signatures into the Bro
IDS and replay the network traffic of the test datasets. We utilize a time-window of tw = 15 (minutes) for our
tests. No multi-stage attacks were detected by Bro, as expected.

6 Small and Big flows datasets:http://tcpreplay.appneta.com/wiki/captures.html
7 CTU-13 Dataset: https://stratosphereips.org/category/dataset.html
8 HoneyBot Dataset: http://www.netresec.com/?page=PcapFiles
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5. As a next step, we merge each dataset with the network traffic captured by Wireshark in the initial step (that
includes our injected multi-stage attacks). Subsequently, we replay each modified network file while Bro is running.
In all cases, Bro successfully detects all of the injected attacks without generating any false positives.

5.4 Shodan Evasion

One of the most important and essential features of a honeypot is to remain undetected as a decoy mechanism. This is
a very hard feature to achieve and to be evaluated. During our experimental evaluation setup of Conpot and HosTaGe
ICS, we received a lot of probes from Shodan. Shodan is one of the biggest search engines to find vulnerable devices on
the Internet. It crawls the entire Internet to check for vulnerable devices. On the Shodan website, users can search for IP
addresses, specific devices, protocols and also vulnerabililtes like heartbleed [11] or default password. Recently, Shodan
started a new service called Honeypot Or Not? which can identify honeypots. This service performs a series of probes or
checks and subsequently creates a score, which is called Honeyscore for each probed device. Shodan determines if the
host is a honeypot based on this score.

During the evaluation period both honeypots (Conpot and HosTaGe ICS) received probes from Shodan. The probes
targetted HTTP, Modbus and S7 protocols. There were as many as 90 probes received over a period of 8 weeks. The
probes were observed to be from 7 different subnets.

After 3 weeks, Shodan identified Conpot to be a honeypot and listed this on its website at the honeypot or not site .
Figure 26 shows the Shodan search result of our Conpot instance IP. The open services and protocols were also listed.
HosTage ICS was not detected as a honeypot by Shodan. The Shodan probes for HTTP and SSH were of low complexity,
where the HTTP protocol involved a GET request and the SSH protocol was just the initial handshake message. The
probes for Modbus and S7 protocols looked more sophisticated. An analysis made to the payload reveal that it could be
a modified Nmap or Metasploit script to identify ICS.

Figure 26: Shodan Search result of Conpot Instance 9

The S7 attack involved checks for the device type, location, serial number, plant identification and module name. The
Modbus attack involved fetching details of certain units (i.e., unit number 0 and 255) and their slave data. Conpot could
not respond as expected by Shodan in all the aforementioned requests (either due to static serial numbers or Modbus
protocol simulation errors) and thus was classified as a honeypot. HosTaGe ICS managed to respond successfully and
hence remain undetected. Figure 27 shows the conpot instance detected as a honeypot in Shodan Honeypot or Not? page.

Figure 27: Conpot detected at Shodan Honeypot or Not page 10
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We tried to investigate Shodan’s honeypot identification criteria, based on the probes received by Shodan. Finding
the probes received from Shodan was a challenge. Shodan does not reveal it probes IP. From a lot of study and mining
on the Internet, we could identify some of the Shodan probes and tried to fetch data from our logs based on this
information. Table 5 shows the various Shodan probes, hostname, location and the protocols they probe. Though we
have the hostname, it is essential to know the packets that the probes use to get information to decide on whether the
target system is a honeypot. In Listing 3 we show the packets received from the probes of Shodan. This information was
logged by Conpot and Bro NIDS. We aggregate the log information from both to get some interesting information.

Table 5: Shodan Probes Overview
SlNo Shodan Probe IP Hostname Protocol Targeted Location

1 71.6.167.142 census 9.shodan.io S7
San Diego.
California, United States

2 71.6.135.131 census7.shodan.io HTTP
San Diego.
California, United States

3 66.240.192.138 census8.shodan.io HTTP
San Diego.
California, United States

4 66.240.236.119 census6.shodan.io S7
San Diego.
California, United States

5 93.120.27.62 m247.ro.shodan.io Modbus Romania
6 188.138.9.50 atlantic.census.shodan.io S7, Modbus Germany
7 85.25.103.50 pacific.census.shodan.io Modbus Germany

Further we analyse the impact of the above Shodan probes on our honeypot environments. To determine the impact of
Shodan[4] on our honeypots, we consider the attack data obtained before Shodan Probes and attacks after the Shodan
probes. We observe a significant decline of attacks after Shodan declares Conpot instance as a honeypot. Shodan
probed both the honeypots roughly around the same time period. Figure 28 shows the impact of Shodan probes on
Conpot instance before and after the probes attacked Conpot. A significant fall in the number of attacks is observed.
On the contrary, Figure 29 shows the impact of Shodan probes on HosTaGe ICS. There seems to be negligible impact on
HosTaGe ICS. However, to support our research that Shodan probes do make an impact on the honeypots, we need to
prove that there is a realistic impact and that attackers look forward to Shodan for determining if the vulnerable systems
on the Internet are actually honeypots. This research is important, considering honeypots to be stealthy detection systems.
Such services pose a threat to the working aspect and productivity of a honeypot.
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Figure 28: Shodan Impact on Conpot Attacks

We can make use of Gaussian Distributions with the help of curve fitting algorithms to prove the impact is significant,
provided we have more live data. This is a continued research and will be focused on the future work of HosTaGe.
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5.5 Performance Evaluation

Honeypots are usually deployed on robust systems that can withstand strategized attacks. HosTaGe ICS is a mobile
honeypot designed and implemented for the Android OS platform. Android is highly flexible and open source offering a
large number of developer APIs and libraries.

We intend to provide a robust environment for HosTaGe ICS through the Android platform leveraging its open source
and developer friendly features. We try to achieve robustness through the protocol emulation mechanism. The mech-
anism has been carefully implemented for reply mechanisms of individual attacks. Further, by studying the behavior
of target systems with respect to popular attacks towards individual protocols, a robust response mechanism has been
implemented for handling the impact. HosTaGe ICS was deployed on a Samsung Galaxy S4 with a rooted configuration
to allow emulation of protocols which have ports below 1024. The evaluation period was done for increasing interval
periods of 5 minutes until 1 hour.

HosTaGe ICS performance was evaluated using PowerTutor[66], an android app to monitor the power consumed by
major systems like the CPU, network interface, display, memory and group this power consumption by the appropriate
applications. The primary goal of the application is to be able to track power consumption changes after modifying the
application architecture and implementation details.

HosTaGe ICS was monitored with various performance impact constraints such as monitoring with the app minimized
with running background, services stopped and with full functionality where the app runs in foreground and has all
services enabled. To achieve the desired ICS specific functionality, we require the device to be rooted. This is necessary
to achieve port binding to the protocols to be emulated.
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Figure 30: HosTaGe ICS Power Consumption Modes

Figure 30 shows the Power Consumption of HosTaGe ICS at three different modes. We briefly discuss the energy
efficiency of HosTaGe ICS during the three modes below.

• HosTaGe ICS on screen with full functionality: We evaluate the power consumed by HosTaGe ICS incrementally
for a period of one hour. HosTaGe ICS was tested running foreground with multistage Detection service active.
The Nuclear Power plant is set as active profile for monitoring. The default screen of the app consists of animation
depicting the current state of network.

• HosTaGe ICS running background: The power consumption is evaluated with HosTaGe ICS running in back-
ground with multistage attack service active. The service is called every 15 minutes. This mode has fair utilization
of power as there is no app GUI on foreground.

• HosTaGe ICS running background with multistage service off: In this mode, the power consumption evalu-
ation with multistage attack service turned off. This mode provides best utilization of power in comparison with
other modes.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  300  600  900  1200  1500  1800  2100  2400  2700  3000  3300  3600

P
o
w

e
r 

C
o
n

s
u
m

ti
o

n
(m

W
)

Time(Seconds)

HosTaGe ICS

AVG AV Free

Figure 31: HosTaGe ICS Power Consumption in comparison with AVG

53



In addition to comparison with different modes, we compare HosTaGe ICS with AVG AV Free app to better evaluate
the power consumption. While it was hard to find a suitable app to compare the power utilization of HosTaGe ICS, we
chose to compare with AVG on the basis of functionality. As our app is deployed on a device, which would preferably
not be used for usual applications, we restrict the comparison to an app which is similar to the resource consumption
of HosTaGe ICS. Figure 31 shows the power consumption of HosTaGe ICS with comparison to AVG AV Free. HosTaGe
ICS was running in background and minimized with the multistage attack detection service enabled. It is observed that
HosTaGe ICS consumes fairly more power. It was also observed that the possible reason for increase in power utilization
is due to the varied occurrence of attacks on HosTaGe ICS. The energy consumption depends on the protocol being
targeted, the number of connections and packing the response to the request made. Therefore, the utilization changes
based on the attacks received.

5.6 Limitations

There were challenges faced during the implementation of some specific modules in HosTaGe ICS. Some design decisions
such as rooting of the mobile device, had to be assumed to achieve the functionality of the app as a whole. The Siemens
S7 protocol operates over the ISO TSAP transport layer. The regulation was imposed by DHS11claiming that TCP’s lack
of encryption capability. Due to some ambiguties in the design of ISO-TSAP on contrary to regular TCP, the S7 protocol
was decided to be implemented as to operate on TCP in HosTaGe ICS. However, this does not deviate the working
mechanism of the S7 protocol. The protocol interaction works normally as on with TCP connections but sometimes failed
if a connection is attempted from legacy software.

The SNMP protocol is implemented as a basic service because of the absence of support on Android hardware and
kernel. This is due to a restriction by the manufacturers enforced on the design. Emulation of the SNMP protocol is
very limited and the functionality is not completely achieved. Siemens has its proprietary and customized FTP system.
Emulation of FTP as per Siemens could not be achieved due to the lack of documentation. Multistage attacks consider
portscans also as attack protocols for inferring the detection. However, signature policies for multistage attacks involving
portscans could not be achieved due to development constraints on the Bro language. Nevertheless, a prototype is
implemented as a part of an attempt. This implementation is not optimized and does not offer full functionality. We use
the HTTP protocol for the Nuclear Power Plant profile. Once the user chooses this profile, the webserver is configured
to host a HTML page automatically that looks like a Siemens device portal. The webpage designed is not according
to the default portal. This is hard to implement due to limited support of Android towards creation of HTML content
dynamically. The webpage generated as of now is indeed capable of attracting traffic, but a feel of the default site would
make it even better.

Signature generation for Bro IDS is an important feature of HosTaGe ICS. The signatures generated are stored in the
device internal memory and have to be manually deployed to the Bro instance. An alternative would be to automate this
process.

5.7 Summary

The evaluation section is briefly divided into experimental setup, detection evaluation, Bro signature generation eval-
uation, Shodan evasion, performance evaluation and limitations. The experimental setup has two parts and the first
provides details about the setup made for the evaluation of HosTaGe ICS with Conpot. The second part provides infor-
mation on the setup made to evaluate the signatures generated by HosTaGe ICS for Bro NIDS.

The detection evaluation subsection is further divided into analysis of individual protocols, comparison of Conpot and
HosTaGe ICS, Stuxnet propagation and lastly inferences and evaluation on multistage attacks. The analysis of individual
protocols determine the detection capabilities of HostaGe ICS with respect to the Modbus, S7, HTTP and Telnet protocols
implemented in our honeypot. Specific attacks on the Modbus protocol provide an insight into the attacker strategies
for exploiting the system. The results observed are listed along with the attack data evaluation for Modbus protocol.
HosTaGe ICS was evaluated for detection capabilities in comparison to Conpot. The two honeypots were deployed
and made open to the Internet. The attacks received on the honeypots are compared and represented graphically. It
is observed that HosTaGe ICS performed better on HTTP protocol and is nearly equal to Conpot on the detection of
Modbus and S7 protocols. HosTaGe ICS also implemented the Telnet protocol and the attacks received on Telnet are also
represented graphically. Detecting the Stuxnet malware on HosTaGe ICS is discussed further by evaluating it by setting up
an environment feasible for it to propagate. The evaluation setup is discussed. The malware packets are captured during
propagation from the infected host to the network share simulated by HosTaGe ICS. The file injected into the network
share is further validated by HosTaGe by computing a hash and checking it with the VirusTotal database. We were
successful in detecting the propagation of Stuxnet into our honeypot. During the evaluation period, we received attacks

11 http://www.dhs.gov/
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with a significant pattern. We implemented a module to specifically detect multistage attacks and received significant
results. The results obtained are listed accordingly.

HosTaGe ICS signature generation module generates signatures and policies for the Bro NIDS. Evaluation of the
signatures generated are discussed where the imposed attacks by us is merged along with large pcap file that are input
to Bro for analysis. Bro detected the imposed attacks by us successfully in both live and offline detection modes.

During the evaluation phase, we observed probes from Shodan search engine. We performed a deeper analysis into
these probes and found about Shodans Honeypot or Not? tool which detected if the end system is an honeypot. The
Conpot instance was detected by this tool to be a honeypot but not HosTaGe ICS. HosTaGe ICS managed to send correct
replies to these probes which made the tool infer that the host was a real system. Further, we investigated the impact
of these probes on the attack detection capabilities of the honeypots. The results are represented through graphs which
indicate the decline in the number of attacks for the Conpot instance but not for HosTaGe ICS. However, to prove the
impact, we needed more data for representing through curve fitting techniques and distributions. This area will be
focused in the future work.

Lastly, we discussed on performance evaluation which focused on power consumption of HostaGe ICS through three
modes. The first mode involved running HosTaGe ICS on screen with the multistage attack detection service running in
background. Second, we run HosTaGe ICS in the background along with multistage attack detection service and lastly
we only run HosTaGe ICS in the background without multistage attack detection service. We observed that HostaGe ICS
in full on-screen consumes more power than the other two modes. We also compared the power consumption of HostaGe
ICS with another running application like AVG antivirus and concluded that HostaGe ICS consumes quite more power
when compared to the antivirus application and the reason would be because of varied occurence of attacks on HosTaGe
ICS.

The limitations sections describes the limitations faced during the implementation of HosTaGe ICS and the challenges
which could be optimized in the future work.
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6 Conclusion

With almost every device being capable of accessible through the Internet, serious threats follow regarding the security of
the devices and enterprise networks. ICS form a backbone for basic services offered to humanity. These systems are also
highly critical because of their functionality. Such devices have to be protected. The driving research questions behind
this thesis were to efficiently detect ICS specific attacks and detect complex malware like Stuxnet by extending HosTaGe
capabilities. During the course of the thesis, some significant results observed led to resolving an emerging research
question of identifying multistage attacks, a popular strategy followed by attackers to compromise the end systems. To
address this question, related work on securing the ICS has been discussed. ICS environments today offer better managing
capabilities to its users by implying newer hardware which are compatible with modern Internet infrastructure. This also
poses as a serious threat as it opens up heaps of opportunities for attackers to gain illegal access to the infrastructure.

Existing approaches include deploying NIDS that rely on signatures to detect the attacks and honeypots that are
capable of simulating the target environment. As IDS rely on signatures, it is sometimes not possible to detect tailored
attacks and related honeypots solutions do not provide enough flexibility to analyse these attacks. They provide lesser
simulation capabilities. A flexible,user friendly, robust and interactive mechanism is necessary to tackle the discussed
issues.

We introduced HosTaGe ICS a mobile based low interactive honeypot for ICS. HosTaGe ICS extends the functionality
of HosTaGe, a low interaction honeypot capable of simulating various profiles and protocols. The core idea behind
HosTaGe ICS is to be capable of detecting attacks with respect to ICS environment. HosTaGe ICS successfully emulates
ICS specific protocols like Modbus and S7 thereby offering a complete simulation of ICS specific devices. The protocols
bound together with other protocols like HTTP, Telnet, SMTP and SMB are successfully capable of simulating the master
and slave profiles in an ICS environment. The response mechanisms of individual protocols are designed considering
previous exploits and malware in the area of ICS. The services were replicated by studying the behavior of popularly
deployed Siemens S7 PLCs and studying their vulnerabilities.

We formally modeled all the attack strategies to arrive at a generic attack model. This also led to the conclusion that
formally modeling the attacks and the malware propagation techniques helps in reverse engineering and anatomy of a
malware. Inorder to detect complex malware like Stuxnet, we analyze the propagation of Stuxnet and formally modelling
it for better understanding and implementation.

Further, HosTaGe ICS extends the detection capabilities of HosTaGe to detect file injection and multistage attacks. File
injection detects any malware injected into the system and verifies it with an online virus database. This feature enables
HosTaGe ICS to detect complex malware like Stuxnet, which are capable of devastating the ICS infrastructure. HosTaGe
ICS also efficiently detects multistage attacks, a crucial strategy followed by adversaries for attacking a specific target.
We extended HosTaGe ICS to be more productive by generating signatures for the attacks detected in specific protocols.
These signatures can be directly deployed on Bro IDS to check incoming packets for malicious payload. Also, HostaGe
ICS is capable of generating policies for multistage attacks detection. These policies help in reducing false positives and
also provide front end protection for Intrusion Prevention System (IPS) by dropping packets from blacklisted attackers.
The signatures and policies work effectively on both live and offline analysis using Bro. Through these techniques, we
were able to filter genuine attacks and reduce the number of false positives hereby improving the detection efficiency.

The results obtained during the course of the thesis demonstrate that HosTaGe ICS is capable of effectively simulating
ICS specific profiles and protocols by attracting huge number of malicious traffic. Further, the implementation of an
approach to detect Stuxnet propagation through File Injection proved that HosTaGe ICS is capable of detecting such
complex malware. The results achieved also led to the identification of multistage attacks and devise a method to detect
them in HosTaGe ICS. The attacks also led to the observation of Shodan probes that fetch information from target systems,
to determine if an end system is real or a honeypot. Shodans Honeypot or Not? service poses a huge threat for Enterprise
that use honeypots as a line of defence to monitor their networks. We describe Shodans strategy to determine honeypots
by inspecting and analyzing their packets.

HosTaGe ICS like its predecessor is robust to attacks and offers good interaction capabilities. Ideal features like
obfuscation, stealth, atmost simulation, low-complexity, reduced resource consumption, user-friendly, flexible make it a
good player amongst other honeypots in the same area. We also argue that HosTaGe ICS being a mobile honeypot offers
better detection capabilities than other related honeypot services available for ICS. It also supports addition of more
protocols and detection of attack strategies. HosTaGe ICS has been developed considering atmost productivity in live
scenarios. Since it is deployed on a mobile device, the administration is fairly simple for all levels of users. Advanced
features like service settings are also available for advanced users. ICS are vital for human basic needs, said so there is a
need to avoid inhibition and take measures to safeguard them.
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6.1 Future Work

HosTaGe ICS opens up opportunities for future work and enhancing the system further. Some of the features were
decided to be ignored based on some factors like time, development, library support and lack of information. What
follows will be a brief overview of various enhancements for HosTaGe ICS. There are a lot of developments in the field
of ICS and the technology is continuously evolving to provide better support and functionality. Newer protocols in the
Profibus[55] module could be included to simulate ICS environment better. Simulation of newer industrial devices such
as PLC with vulnerabilities could be added. HosTaGe ICS currently supports simulation of a single slave device. This
could be enhanced to provide support for multiple slave devices connected together through the Modbus. This provides
a more complex environment for the attackers hereby gaining more attention.

Soon after the ICS were first targeted by Stuxnet, newer malware were designed to create similar impact. Malware
like Flame, Duqu , Duqu2 and Havex have had impacts similar to that of Stuxnet. Mechanisms to detect such malware
could be added to HosTaGe ICS as an extended detection capability. The current signature generation module creates
signatures for Bro IDS. This functionality can be extended to generate signatures for the Snort IDS[43]. Snort is a widely
deployed enterprise grade intrusion detection monitor.

HostaGe ICS emulates different protocols and runs services in the background which utilize more power from the
device. This could be optimized by providing different battery utilization modes for user to choose from. This could not
only reduce the power consumption but also provide different specific working modes.

HosTaGe ICS could be made more flexible by adding a plugin where newer protocols developed could be integrated
through the app itself. This adds a new advantage of quickly updating the existing protocols and also for adding newer
protocols into the collection.

We discussed about Shodan probes on our evaluation section. Shodans Honeypot or Not? tool poses as huge threat for
honeypot researchers and users as the main intention of deploying them is not achieved. The research could be extended
further to assess the impact of Shodan probes and also handling them. Though HosTaGe ICS is currently not affected by
this tool, ensuring that the probes do not impact its identity is important.

HosTaGe ICS currently supports detecting portscans, file injections and multistage attacks as a part of attack detection
strategies. More strategies like Denial Of Service can be implemented to offer better detection capabilities.
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B Listings

Listing 3: Packets received from Shodan Probes
//93.120.27.62 Modbus Packets

2015-07-27 15:55:40,505 New modbus session from 93.120.27.62

(1651567b-c1df-42da-aa4d-4596ff158256)

2015-07-27 15:55:40,510 New connection from 93.120.27.62:54601.

(1651567b-c1df-42da-aa4d-4596ff158256)

2015-07-27 15:55:40,521 Modbus traffic from 93.120.27.62: {’function_code’: None,

’slave_id’: 0, ’request’: ’0000000000020011’, ’response’: ’9101’}

(1651567b-c1df-42da-aa4d-4596ff158256)

//66.240.236.119 S7 Packets

2015-08-27 22:08:27,989 New s7comm session from 66.240.236.119

(91a441e7-5059-4fb6-8bf4-7ebc5bae4086)

2015-08-27 22:08:27,994 New connection from 66.240.236.119:52994.

(91a441e7-5059-4fb6-8bf4-7ebc5bae4086)

//71.6.135.131 HTTP Packets

2015-08-16 17:43:26,221 New http session from 71.6.135.131

(899d404f-c8c3-4a7f-abfa-b7b4c1bb1f4d)

2015-08-16 17:43:26,225 HTTP/1.1 GET request from (’71.6.135.131’, 60616): (’/’, [’Host:

130.83.208.166\r\n’, ’Accept-Encoding: identity\r\n’], None).

899d404f-c8c3-4a7f-abfa-b7b4c1bb1f4d

2015-08-16 17:43:26,228 HTTP/1.1 response to (’71.6.135.131’, 60616): 302.

899d404f-c8c3-4a7f-abfa-b7b4c1bb1f4d

2015-08-16 17:43:26,761 HTTP/1.1 GET request from (’71.6.135.131’, 60892): (’/robots.txt’,

[’Host: 130.83.208.166\r\n’, ’Accept-Encoding: identity\r\n’], None).

899d404f-c8c3-4a7f-abfa-b7b4c1bb1f4d

//66.240.192.138 HTTP Packets

2015-09-27 16:36:04,341 New http session from 66.240.192.138

(1651ea2c-fa69-4924-a44b-a4cb10d4e588)

2015-09-27 16:36:04,345 HTTP/1.1 GET request from (’66.240.192.138’, 36902): (’/’, [’Host:

130.83.208.166\r\n’, ’Accept-Encoding: identity\r\n’], None).

1651ea2c-fa69-4924-a44b-a4cb10d4e588

2015-09-27 16:36:04,353 HTTP/1.1 response to (’66.240.192.138’, 36902): 302.

1651ea2c-fa69-4924-a44b-a4cb10d4e588

2015-09-27 16:36:04,913 HTTP/1.1 GET request from (’66.240.192.138’, 37419): (’/robots.txt’,

[’Host: 130.83.208.166\r\n’, ’Accept-Encoding: identity\r\n’], None).

1651ea2c-fa69-4924-a44b-a4cb10d4e588

//71.6.167.142 S7 Packets

2015-08-12 05:43:35,256 New s7comm session from 71.6.167.142

(3df36aea-2178-4f31-ae17-68d961bd99ff)

2015-08-12 05:43:35,261 New connection from 71.6.167.142:55412.

(3df36aea-2178-4f31-ae17-68d961bd99ff)

2015-08-12 05:43:41,437 New connection from 71.6.167.142:56775.

(3df36aea-2178-4f31-ae17-68d961bd99ff)

//188.138.9.50 S7 Packets

2015-07-19 03:18:56,463 New s7comm session from 188.138.9.50

(c2f351af-36a5-402b-93cd-28413f036836)

2015-07-19 03:18:56,467 New connection from 188.138.9.50:53854.

(c2f351af-36a5-402b-93cd-28413f036836)

2015-07-19 03:18:56,666 New connection from 188.138.9.50:53868.

(c2f351af-36a5-402b-93cd-28413f036836)
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//85.25.103.50 Modbus Packets

2015-08-24 07:02:56,907 New modbus session from 85.25.103.50

(499b645e-98ce-409c-ba4f-3f42d4240056)

2015-08-24 07:02:56,912 New connection from 85.25.103.50:51086.

(499b645e-98ce-409c-ba4f-3f42d4240056)

2015-08-24 07:02:56,923 Modbus traffic from 85.25.103.50: {’function_code’: None,

’slave_id’: 0, ’request’: ’0000000000020011’, ’response’: ’9101’}

(499b645e-98ce-409c-ba4f-3f42d4240056)
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Listing 4: Bro Policy for Multistage Attack detected by HosTaGE ICS

@load base/frameworks/notice

export{

redef enum Notice::Type += {

Multistage

};

}

//Declaring and Initializing variables

global attack_ip = 130.83.208.167;

global attack_port : vector of port = vector(80/tcp,22/tcp);

global attack_count = 0;

global attack_subnet = 130.83.208.0/24;

//On a connection request

event connection_established(c: connection)

{

print fmt ("Initiating.............");

//Check for attack on different protocols as inferred from HosTaGe ICS

for (i in attack_port){

//Check if it is the first connection from the attacker

if(attack_count==0){

if ((c$id$orig_h in attack_subnet) && (c$id$resp_p==attack_port[0]))

{

local net_time1: time = network_time();

print fmt("The first attack ip is ");

print c$id$orig_h;

print fmt("and the first port is");

print c$id$resp_p;

++attack_count;

print attack_count;

next;

}

}

//On the next connection

else {

if ((c$id$orig_h in attack_subnet) && (c$id$resp_p == attack_port[1])){

local net_time2: time = network_time();

print("The second ip is");

print c$id$orig_h;

print fmt("The second port is");

print c$id$resp_p;

//Check for time interval

if(net_time2-net_time1 <= 15 min){

print fmt ("MULTISTAGE ATTACK!!!");

}

NOTICE([$note = Multistage,

$conn = c,

$msg = fmt("Multistage Attack! from %s",c$id$orig_h)]);

attack_count = 0;
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}

}

}

}
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Listing 5: Nmap Modbus Discovery Script
ocal bin = require "bin"

local comm = require "comm"

local nmap = require "nmap"

local shortport = require "shortport"

local stdnse = require "stdnse"

local string = require "string"

local table = require "table"

description = [[

Enumerates SCADA Modbus slave ids (sids) and collects their device information.

Modbus is one of the popular SCADA protocols. This script does Modbus device

information disclosure. It tries to find legal sids (slave ids) of Modbus

devices and to get additional information about the vendor and firmware. This

script is improvement of modscan python utility written by Mark Bristow.

Information about MODBUS protocol and security issues:

* MODBUS application protocol specification:

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf

* Defcon 16 Modscan presentation:

https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-bristow.pdf

* Modscan utility is hosted at google code: http://code.google.com/p/modscan/

]]

---

-- @usage

-- nmap --script modbus-discover.nse --script-args=’modbus-discover.aggressive=true’ -p 502 <host>

--

-- @args aggressive - boolean value defines find all or just first sid

--

-- @output

-- PORT STATE SERVICE

-- 502/tcp open modbus

-- | modbus-discover:

-- | sid 0x64:

-- | Slave ID data: \xFA\xFFPM710PowerMeter

-- | Device identification: Schneider Electric PM710 v03.110

-- | sid 0x96:

-- |_ error: GATEWAY TARGET DEVICE FAILED TO RESPONSE

--

-- @xmloutput

-- <table key="sid 0x64">

-- <elem key="Slave ID data">\xFA\xFFPM710PowerMeter</elem>

-- <elem key="Device identification">Schneider Electric PM710 v03.110</elem>

-- </table>

-- <table key="sid 0x96">

-- <elem key="error">GATEWAY TARGET DEVICE FAILED TO RESPONSE</elem>

-- </table>

-- Version 0.2 - /12.12.10/ - script cleanup

-- Version 0.3 - /13.12.10/ - several bugfixes

author = "Alexander Rudakov"

license = "Same as Nmap--See https://nmap.org/book/man-legal.html"

categories = {"discovery", "intrusive"}

portrule = shortport.port_or_service(502, "modbus")

local form_rsid = function(sid, functionId, data)

local payload_len = 2

if ( #data > 0 ) then
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payload_len = payload_len + #data

end

return "\0\0\0\0\0" .. bin.pack(’CCC’, payload_len, sid, functionId) .. data

end

discover_device_id_recursive = function(host, port, sid, start_id, objects_table)

local rsid = form_rsid(sid, 0x2B, "\x0E\x01" .. bin.pack(’C’, start_id))

local status, result = comm.exchange(host, port, rsid)

if ( status and (#result >= 8)) then

local ret_code = string.byte(result, 8)

if ( ret_code == 0x2B and #result >= 15 ) then

local more_follows = string.byte(result, 12)

local next_object_id = string.byte(result, 13)

local number_of_objects = string.byte(result, 14)

stdnse.debug1("more = 0x%x, next_id = 0x%x, obj_number = 0x%x", more_follows,

next_object_id, number_of_objects)

local offset = 15

for i = start_id, (number_of_objects - 1) do

local object_id = string.byte(result, offset)

local object_len = string.byte(result, offset + 1)

-- error data format --

if object_len == nil then break end

local object_value = string.sub(result, offset + 2, offset + 1 + object_len)

stdnse.debug1("Object id = 0x%x, value = %s", object_id, object_value)

table.insert(objects_table, object_id + 1, object_value)

offset = offset + 2 + object_len

end

if ( more_follows == 0xFF and next_object_id ~= 0x00 ) then

stdnse.debug1("Has more objects")

return discover_device_id_recursive(host, port, sid, next_object_id, objects_table)

end

end

end

return objects_table

end

local discover_device_id = function(host, port, sid)

return discover_device_id_recursive(host, port, sid, 0x0, {})

end

local extract_slave_id = function(response)

local byte_count = string.byte(response, 9)

if ( byte_count == nil or byte_count == 0) then return nil end

local offset, slave_id = bin.unpack("A"..byte_count, response, 10)

return slave_id

end

modbus_exception_codes = {

[1] = "ILLEGAL FUNCTION",

[2] = "ILLEGAL DATA ADDRESS",

[3] = "ILLEGAL DATA VALUE",

[4] = "SLAVE DEVICE FAILURE",

[5] = "ACKNOWLEDGE",

[6] = "SLAVE DEVICE BUSY",

[8] = "MEMORY PARITY ERROR",

[10] = "GATEWAY PATH UNAVAILABLE",

[11] = "GATEWAY TARGET DEVICE FAILED TO RESPOND"

}

action = function(host, port)

-- If false, stop after first sid.

local aggressive = stdnse.get_script_args(’modbus-discover.aggressive’)

local opts = {request_timeout=2000}
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local results = stdnse.output_table()

for sid = 1, 246 do

stdnse.debug3("Sending command with sid = %d", sid)

local rsid = form_rsid(sid, 0x11, "")

local status, result = comm.exchange(host, port, rsid, opts)

if ( status and (#result >= 8) ) then

local ret_code = string.byte(result, 8)

if ( ret_code == (0x11) or ret_code == (0x11 + 128) ) then

local sid_table = stdnse.output_table()

if ret_code == (0x11) then

local slave_id = extract_slave_id(result)

sid_table["Slave ID data"] = slave_id or "<unknown>"

elseif ret_code == (0x11 + 128) then

local exception_code = string.byte(result, 9)

local exception_string = modbus_exception_codes[exception_code]

if ( exception_string == nil ) then

exception_string = ("Unknown exception (0x%x)"):format(exception_code)

end

sid_table["error"] = exception_string

end

local device_table = discover_device_id(host, port, sid)

if ( #device_table > 0 ) then

sid_table["Device identification"] = table.concat(device_table, " ")

end

if ( #sid_table > 0 ) then

results[("sid 0x%x"):format(sid)] = sid_table

end

if ( not aggressive ) then break end

end

end

end

if ( #results > 0 ) then

port.state = "open"

port.version.name = "modbus"

nmap.set_port_version(host, port)

return results

end

end
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Listing 6: Metasploit Modbus Detect Script

##

# This module requires Metasploit: http://metasploit.com/download

# Current source: https://github.com/rapid7/metasploit-framework

##

require ’msf/core’

class Metasploit3 < Msf::Auxiliary

include Msf::Exploit::Remote::Tcp

include Msf::Auxiliary::Scanner

def initialize

super(

’Name’ => ’Modbus Version Scanner’,

’Description’ => %q{

This module detects the Modbus service, tested on a SAIA PCD1.M2 system.

Modbus is a clear text protocol used in common SCADA systems, developed

originally as a serial-line (RS232) async protocol, and later transformed to IP,

which is called ModbusTCP.

},

’References’ =>

[

[ ’URL’, ’http://www.saia-pcd.com/en/products/plc/pcd-overview/Pages/pcd1-m2.aspx’ ],

[ ’URL’, ’http://en.wikipedia.org/wiki/Modbus:TCP’ ]

],

’Author’ => [ ’EsMnemon <esm[at]mnemonic.no>’ ],

’DisclosureDate’ => ’Nov 1 2011’,

’License’ => MSF_LICENSE

)

register_options(

[

Opt::RPORT(502),

OptInt.new(’UNIT_ID’, [true, "ModBus Unit Identifier, 1..255, most often 1 ", 1]),

OptInt.new(’TIMEOUT’, [true, ’Timeout for the network probe’, 10])

], self.class)

end

def run_host(ip)

# read input register=func:04, register 1

sploit="\x21\x00\x00\x00\x00\x06\x01\x04\x00\x01\x00\x00"

sploit[6] = [datastore[’UNIT_ID’]].pack("C")

connect()

sock.put(sploit)

data = sock.get_once

# Theory: When sending a modbus request of some sort, the endpoint will return

# with at least the same transaction-id, and protocol-id

if data

if data[0,4] == "\x21\x00\x00\x00"

print_good("#{ip}:#{rport} - MODBUS - received correct MODBUS/TCP header (unit-ID:

#{datastore[’UNIT_ID’]})")

else

print_error("#{ip}:#{rport} - MODBUS - received incorrect data #{data[0,4].inspect} (not

modbus/tcp?)")

end

else

vprint_status("#{ip}:#{rport} - MODBUS - did not receive data.")

end
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disconnect()

end

end
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Listing 7: Metasploit script of Writing into Modbus Registers

##

# This module requires Metasploit: http://metasploit.com/download

# Current source: https://github.com/rapid7/metasploit-framework

##

require ’msf/core’

class Metasploit3 < Msf::Auxiliary

include Msf::Exploit::Remote::Tcp

def initialize(info = {})

super(update_info(info,

’Name’ => ’Modbus Client Utility’,

’Description’ => %q{

This module allows reading and writing data to a PLC using the Modbus protocol.

This module is based on the ’modiconstop.rb’ Basecamp module from DigitalBond,

as well as the mbtget perl script.

},

’Author’ =>

[

’EsMnemon <esm[at]mnemonic.no>’, # original write-only module

’Arnaud SOULLIE <arnaud.soullie[at]solucom.fr>’ # new code that allows read/write

],

’License’ => MSF_LICENSE,

’Actions’ =>

[

[’READ_COIL’, { ’Description’ => ’Read one bit from a coil’ } ],

[’WRITE_COIL’, { ’Description’ => ’Write one bit to a coil’ } ],

[’READ_REGISTER’, { ’Description’ => ’Read one word from a register’ } ],

[’WRITE_REGISTER’, { ’Description’ => ’Write one word to a register’ } ]

],

’DefaultAction’ => ’READ_REGISTER’

))

register_options(

[

Opt::RPORT(502),

OptInt.new(’DATA’, [false, "Data to write (WRITE_COIL and WRITE_REGISTER modes only)"]),

OptInt.new(’DATA_ADDRESS’, [true, "Modbus data address"]),

OptInt.new(’UNIT_NUMBER’, [false, "Modbus unit number", 1]),

], self.class)

end

# a wrapper just to be sure we increment the counter

def send_frame(payload)

sock.put(payload)

@modbus_counter += 1

sock.get_once(-1, sock.def_read_timeout)

end

def make_payload(payload)

packet_data = [@modbus_counter].pack("n")

packet_data += "\x00\x00\x00" #dunno what these are

packet_data += [payload.size].pack("c") # size byte

packet_data += payload

packet_data

end
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def make_read_payload

payload = [datastore[’UNIT_NUMBER’]].pack("c")

payload += [@function_code].pack("c")

payload += [datastore[’DATA_ADDRESS’]].pack("n")

payload += [1].pack("n")

make_payload(payload)

end

def make_write_coil_payload(data)

payload = [datastore[’UNIT_NUMBER’]].pack("c")

payload += [@function_code].pack("c")

payload += [datastore[’DATA_ADDRESS’]].pack("n")

payload += [data].pack("c")

payload += "\x00"

packet_data = make_payload(payload)

packet_data

end

def make_write_register_payload(data)

payload = [datastore[’UNIT_NUMBER’]].pack("c")

payload += [@function_code].pack("c")

payload += [datastore[’DATA_ADDRESS’]].pack("n")

payload += [data].pack("n")

make_payload(payload)

end

def handle_error(response)

case response.reverse.unpack("c")[0].to_i

when 1

print_error("Error : ILLEGAL FUNCTION")

when 2

print_error("Error : ILLEGAL DATA ADDRESS")

when 3

print_error("Error : ILLEGAL DATA VALUE")

when 4

print_error("Error : SLAVE DEVICE FAILURE")

when 6

print_error("Error : SLAVE DEVICE BUSY")

else

print_error("Unknown error")

end

return

end

def read_coil

@function_code = 0x1

print_status("Sending READ COIL...")

response = send_frame(make_read_payload)

if response.nil?

print_error("No answer for the READ COIL")

return

elsif response.unpack("C*")[7] == (0x80 | @function_code)

handle_error(response)

elsif response.unpack("C*")[7] == @function_code

value = response[9].unpack("c")[0]

print_good("Coil value at address #{datastore[’DATA_ADDRESS’]} : #{value}")

else

print_error("Unknown answer")

end

end
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def read_register

@function_code = 3

print_status("Sending READ REGISTER...")

response = send_frame(make_read_payload)

if response.nil?

print_error("No answer for the READ REGISTER")

elsif response.unpack("C*")[7] == (0x80 | @function_code)

handle_error(response)

elsif response.unpack("C*")[7] == @function_code

value = response[9..10].unpack("n")[0]

print_good("Register value at address #{datastore[’DATA_ADDRESS’]} : #{value}")

else

print_error("Unknown answer")

end

end

def write_coil

@function_code = 5

if datastore[’DATA’] == 0

data = 0

elsif datastore[’DATA’] == 1

data = 255

else

print_error("Data value must be 0 or 1 in WRITE_COIL mode")

return

end

print_status("Sending WRITE COIL...")

response = send_frame(make_write_coil_payload(data))

if response.nil?

print_error("No answer for the WRITE COIL")

elsif response.unpack("C*")[7] == (0x80 | @function_code)

handle_error(response)

elsif response.unpack("C*")[7] == @function_code

print_good("Value #{datastore[’DATA’]} successfully written at coil address

#{datastore[’DATA_ADDRESS’]}")

else

print_error("Unknown answer")

end

end

def write_register

@function_code = 6

if datastore[’DATA’] < 0 || datastore[’DATA’] > 65535

print_error("Data to write must be an integer between 0 and 65535 in WRITE_REGISTER mode")

return

end

print_status("Sending WRITE REGISTER...")

response = send_frame(make_write_register_payload(datastore[’DATA’]))

if response.nil?

print_error("No answer for the WRITE REGISTER")

elsif response.unpack("C*")[7] == (0x80 | @function_code)

handle_error(response)

elsif response.unpack("C*")[7] == @function_code

print_good("Value #{datastore[’DATA’]} successfully written at registry address

#{datastore[’DATA_ADDRESS’]}")

else

print_error("Unknown answer")

end

end

def run

@modbus_counter = 0x0000 # used for modbus frames

connect

case action.name
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when "READ_COIL"

read_coil

when "READ_REGISTER"

read_register

when "WRITE_COIL"

write_coil

when "WRITE_REGISTER"

write_register

else

print_error("Invalid ACTION")

end

disconnect

end

end
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